eq2go/old/common/md5.hpp
2025-08-06 19:00:30 -05:00

388 lines
12 KiB
C++

// Copyright (C) 2007 EQ2EMulator Development Team, GPL v3
#pragma once
#include <cstring>
#include <cstdint>
#include <cstdio>
#include <cctype>
class MD5
{
public:
// MD5 computation context structure
struct MD5Context
{
std::uint32_t hash[4]; // Current hash state
std::uint32_t bytes[2]; // Number of bytes processed (64-bit counter)
std::uint32_t input[16]; // Input buffer for 64-byte blocks
};
// Static method to generate MD5 hash from buffer
static void Generate(const std::int8_t* buf, std::uint32_t len, std::int8_t digest[16]);
// Initialize MD5 context for incremental hashing
static void Init(struct MD5Context *context);
// Update MD5 context with additional data
static void Update(struct MD5Context *context, const std::int8_t *buf, std::uint32_t len);
// Finalize MD5 computation and produce digest
static void Final(std::int8_t digest[16], struct MD5Context *context);
// Default constructor - initializes to zero hash
MD5();
// Constructor from unsigned char buffer
MD5(const unsigned char* buf, std::uint32_t len);
// Constructor from char buffer
MD5(const char* buf, std::uint32_t len);
// Constructor from 16-byte binary hash
MD5(const std::int8_t buf[16]);
// Constructor from hex string representation
MD5(const char* iMD5String);
// Generate MD5 from null-terminated string
void Generate(const char* iString);
// Generate MD5 from buffer
void Generate(const std::int8_t* buf, std::uint32_t len);
// Set MD5 from 16-byte binary data
bool Set(const std::int8_t buf[16]);
// Set MD5 from 32-character hex string
bool Set(const char* iMD5String);
// Equality comparison operators
bool operator== (const MD5& iMD5);
bool operator== (const std::int8_t iMD5[16]);
bool operator== (const char* iMD5String);
// Assignment operators
MD5& operator= (const MD5& iMD5);
MD5* operator= (const MD5* iMD5);
// Conversion to hex string
operator const char* ();
private:
// Helper function to convert bytes to little-endian format
static void byteSwap(std::uint32_t *buf, std::uint32_t words);
// Core MD5 transformation function
static void Transform(std::uint32_t hash[4], const std::uint32_t input[16]);
// Helper function to check if character is valid hex digit
static bool IsHexDigit(char c) {
return (c >= '0' && c <= '9') || (c >= 'a' && c <= 'f') || (c >= 'A' && c <= 'F');
}
// Helper function to convert hex string to integer
static std::uint32_t HexToInt(const char* hex) {
std::uint32_t result = 0;
for (int i = 0; hex[i] != '\0'; ++i) {
result *= 16;
if (hex[i] >= '0' && hex[i] <= '9') {
result += hex[i] - '0';
} else if (hex[i] >= 'a' && hex[i] <= 'f') {
result += hex[i] - 'a' + 10;
} else if (hex[i] >= 'A' && hex[i] <= 'F') {
result += hex[i] - 'A' + 10;
}
}
return result;
}
std::int8_t pMD5[16]; // 16-byte MD5 hash storage
char pMD5String[33]; // 32-character hex string representation + null terminator
};
// Default constructor - zero out hash
MD5::MD5() {
std::memset(pMD5, 0, 16);
}
// Constructor from unsigned char buffer
MD5::MD5(const unsigned char* buf, std::uint32_t len) {
Generate(reinterpret_cast<const std::int8_t*>(buf), len, pMD5);
}
// Constructor from char buffer
MD5::MD5(const char* buf, std::uint32_t len) {
Generate(reinterpret_cast<const std::int8_t*>(buf), len, pMD5);
}
// Constructor from 16-byte binary hash
MD5::MD5(const std::int8_t buf[16]) {
Set(buf);
}
// Constructor from hex string
MD5::MD5(const char* iMD5String) {
Set(iMD5String);
}
// Generate MD5 from null-terminated string
void MD5::Generate(const char* iString) {
Generate(reinterpret_cast<const std::int8_t*>(iString), std::strlen(iString));
}
// Generate MD5 from buffer using instance method
void MD5::Generate(const std::int8_t* buf, std::uint32_t len) {
Generate(buf, len, pMD5);
}
// Set MD5 from 16-byte binary data
bool MD5::Set(const std::int8_t buf[16]) {
std::memcpy(pMD5, buf, 16);
return true;
}
// Set MD5 from 32-character hex string
bool MD5::Set(const char* iMD5String) {
char tmp[5] = { '0', 'x', 0, 0, 0 };
for (int i = 0; i < 16; i++) {
tmp[2] = iMD5String[i * 2];
tmp[3] = iMD5String[(i * 2) + 1];
// Validate hex characters
if (!IsHexDigit(tmp[2]) || !IsHexDigit(tmp[3]))
return false;
pMD5[i] = static_cast<std::int8_t>(HexToInt(tmp));
}
return true;
}
// Convert MD5 to hex string representation
MD5::operator const char* () {
std::snprintf(pMD5String, sizeof(pMD5String),
"%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x",
static_cast<unsigned char>(pMD5[0]), static_cast<unsigned char>(pMD5[1]),
static_cast<unsigned char>(pMD5[2]), static_cast<unsigned char>(pMD5[3]),
static_cast<unsigned char>(pMD5[4]), static_cast<unsigned char>(pMD5[5]),
static_cast<unsigned char>(pMD5[6]), static_cast<unsigned char>(pMD5[7]),
static_cast<unsigned char>(pMD5[8]), static_cast<unsigned char>(pMD5[9]),
static_cast<unsigned char>(pMD5[10]), static_cast<unsigned char>(pMD5[11]),
static_cast<unsigned char>(pMD5[12]), static_cast<unsigned char>(pMD5[13]),
static_cast<unsigned char>(pMD5[14]), static_cast<unsigned char>(pMD5[15]));
return pMD5String;
}
// Equality comparison with another MD5 object
bool MD5::operator== (const MD5& iMD5) {
return std::memcmp(pMD5, iMD5.pMD5, 16) == 0;
}
// Equality comparison with 16-byte array
bool MD5::operator== (const std::int8_t* iMD5) {
return std::memcmp(pMD5, iMD5, 16) == 0;
}
// Equality comparison with hex string
bool MD5::operator== (const char* iMD5String) {
char tmp[5] = { '0', 'x', 0, 0, 0 };
for (int i = 0; i < 16; i++) {
tmp[2] = iMD5String[i * 2];
tmp[3] = iMD5String[(i * 2) + 1];
if (pMD5[i] != static_cast<std::int8_t>(HexToInt(tmp)))
return false;
}
return true;
}
// Assignment from another MD5 object
MD5& MD5::operator= (const MD5& iMD5) {
std::memcpy(pMD5, iMD5.pMD5, 16);
return *this;
}
// Assignment from MD5 pointer
MD5* MD5::operator= (const MD5* iMD5) {
std::memcpy(pMD5, iMD5->pMD5, 16);
return this;
}
// Byte-swap array of 32-bit words to little-endian format
void MD5::byteSwap(std::uint32_t *buf, std::uint32_t words) {
std::int8_t *p = reinterpret_cast<std::int8_t*>(buf);
do {
*buf++ = (static_cast<std::uint32_t>(static_cast<std::uint32_t>(p[3]) << 8 | p[2]) << 16) |
(static_cast<std::uint32_t>(p[1]) << 8 | p[0]);
p += 4;
} while (--words);
}
// Generate MD5 digest from buffer using static method
void MD5::Generate(const std::int8_t* buf, std::uint32_t len, std::int8_t digest[16]) {
MD5Context ctx;
Init(&ctx);
Update(&ctx, buf, len);
Final(digest, &ctx);
}
// Initialize MD5 context with standard initial values
void MD5::Init(struct MD5Context *ctx) {
ctx->hash[0] = 0x67452301;
ctx->hash[1] = 0xefcdab89;
ctx->hash[2] = 0x98badcfe;
ctx->hash[3] = 0x10325476;
ctx->bytes[1] = ctx->bytes[0] = 0;
}
// Update MD5 context with new data
void MD5::Update(struct MD5Context *ctx, std::int8_t const *buf, std::uint32_t len) {
std::uint32_t t = ctx->bytes[0];
if ((ctx->bytes[0] = t + len) < t) // Update 64-bit byte count
ctx->bytes[1]++; // Carry from low to high
t = 64 - (t & 0x3f); // Bytes available in ctx->input (>= 1)
if (t > len) {
std::memcpy(reinterpret_cast<std::int8_t*>(ctx->input) + 64 - t, buf, len);
return;
}
// First chunk is an odd size
std::memcpy(reinterpret_cast<std::int8_t*>(ctx->input) + 64 - t, buf, t);
byteSwap(ctx->input, 16);
Transform(ctx->hash, ctx->input);
buf += t;
len -= t;
// Process data in 64-byte chunks
while (len >= 64) {
std::memcpy(ctx->input, buf, 64);
byteSwap(ctx->input, 16);
Transform(ctx->hash, ctx->input);
buf += 64;
len -= 64;
}
// Buffer any remaining bytes of data
std::memcpy(ctx->input, buf, len);
}
// Finalize MD5 computation with padding and length
void MD5::Final(std::int8_t digest[16], MD5Context *ctx) {
int count = ctx->bytes[0] & 0x3F; // Bytes mod 64
std::int8_t *p = reinterpret_cast<std::int8_t*>(ctx->input) + count;
// Set the first byte of padding to 0x80. There is always room.
*p++ = 0x80;
// Bytes of zero padding needed to make 56 bytes (-8..55)
count = 56 - 1 - count;
if (count < 0) { // Padding forces an extra block
std::memset(p, 0, count + 8);
byteSwap(ctx->input, 16);
Transform(ctx->hash, ctx->input);
p = reinterpret_cast<std::int8_t*>(ctx->input);
count = 56;
}
std::memset(p, 0, count);
byteSwap(ctx->input, 14);
// Append 8 bytes of length in *bits* and transform
ctx->input[14] = ctx->bytes[0] << 3;
ctx->input[15] = ctx->bytes[1] << 3 | ctx->bytes[0] >> 29;
Transform(ctx->hash, ctx->input);
byteSwap(ctx->hash, 4);
std::memcpy(digest, ctx->hash, 16);
std::memset(ctx, 0, sizeof(*ctx)); // Clear sensitive data
}
// MD5 transformation constants and helper functions
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
// Central step in MD5 algorithm
#define MD5STEP(f,w,x,y,z,in,s) (w += f(x,y,z)+in, w = (w<<s | w>>(32-s)) + x)
// Core MD5 transformation function - processes one 64-byte block
void MD5::Transform(std::uint32_t hash[4], const std::uint32_t input[16]) {
std::uint32_t a = hash[0], b = hash[1], c = hash[2], d = hash[3];
// Round 1 - F1 function
MD5STEP(F1, a, b, c, d, input[ 0]+0xd76aa478, 7);
MD5STEP(F1, d, a, b, c, input[ 1]+0xe8c7b756, 12);
MD5STEP(F1, c, d, a, b, input[ 2]+0x242070db, 17);
MD5STEP(F1, b, c, d, a, input[ 3]+0xc1bdceee, 22);
MD5STEP(F1, a, b, c, d, input[ 4]+0xf57c0faf, 7);
MD5STEP(F1, d, a, b, c, input[ 5]+0x4787c62a, 12);
MD5STEP(F1, c, d, a, b, input[ 6]+0xa8304613, 17);
MD5STEP(F1, b, c, d, a, input[ 7]+0xfd469501, 22);
MD5STEP(F1, a, b, c, d, input[ 8]+0x698098d8, 7);
MD5STEP(F1, d, a, b, c, input[ 9]+0x8b44f7af, 12);
MD5STEP(F1, c, d, a, b, input[10]+0xffff5bb1, 17);
MD5STEP(F1, b, c, d, a, input[11]+0x895cd7be, 22);
MD5STEP(F1, a, b, c, d, input[12]+0x6b901122, 7);
MD5STEP(F1, d, a, b, c, input[13]+0xfd987193, 12);
MD5STEP(F1, c, d, a, b, input[14]+0xa679438e, 17);
MD5STEP(F1, b, c, d, a, input[15]+0x49b40821, 22);
// Round 2 - F2 function
MD5STEP(F2, a, b, c, d, input[ 1]+0xf61e2562, 5);
MD5STEP(F2, d, a, b, c, input[ 6]+0xc040b340, 9);
MD5STEP(F2, c, d, a, b, input[11]+0x265e5a51, 14);
MD5STEP(F2, b, c, d, a, input[ 0]+0xe9b6c7aa, 20);
MD5STEP(F2, a, b, c, d, input[ 5]+0xd62f105d, 5);
MD5STEP(F2, d, a, b, c, input[10]+0x02441453, 9);
MD5STEP(F2, c, d, a, b, input[15]+0xd8a1e681, 14);
MD5STEP(F2, b, c, d, a, input[ 4]+0xe7d3fbc8, 20);
MD5STEP(F2, a, b, c, d, input[ 9]+0x21e1cde6, 5);
MD5STEP(F2, d, a, b, c, input[14]+0xc33707d6, 9);
MD5STEP(F2, c, d, a, b, input[ 3]+0xf4d50d87, 14);
MD5STEP(F2, b, c, d, a, input[ 8]+0x455a14ed, 20);
MD5STEP(F2, a, b, c, d, input[13]+0xa9e3e905, 5);
MD5STEP(F2, d, a, b, c, input[ 2]+0xfcefa3f8, 9);
MD5STEP(F2, c, d, a, b, input[ 7]+0x676f02d9, 14);
MD5STEP(F2, b, c, d, a, input[12]+0x8d2a4c8a, 20);
// Round 3 - F3 function
MD5STEP(F3, a, b, c, d, input[ 5]+0xfffa3942, 4);
MD5STEP(F3, d, a, b, c, input[ 8]+0x8771f681, 11);
MD5STEP(F3, c, d, a, b, input[11]+0x6d9d6122, 16);
MD5STEP(F3, b, c, d, a, input[14]+0xfde5380c, 23);
MD5STEP(F3, a, b, c, d, input[ 1]+0xa4beea44, 4);
MD5STEP(F3, d, a, b, c, input[ 4]+0x4bdecfa9, 11);
MD5STEP(F3, c, d, a, b, input[ 7]+0xf6bb4b60, 16);
MD5STEP(F3, b, c, d, a, input[10]+0xbebfbc70, 23);
MD5STEP(F3, a, b, c, d, input[13]+0x289b7ec6, 4);
MD5STEP(F3, d, a, b, c, input[ 0]+0xeaa127fa, 11);
MD5STEP(F3, c, d, a, b, input[ 3]+0xd4ef3085, 16);
MD5STEP(F3, b, c, d, a, input[ 6]+0x04881d05, 23);
MD5STEP(F3, a, b, c, d, input[ 9]+0xd9d4d039, 4);
MD5STEP(F3, d, a, b, c, input[12]+0xe6db99e5, 11);
MD5STEP(F3, c, d, a, b, input[15]+0x1fa27cf8, 16);
MD5STEP(F3, b, c, d, a, input[ 2]+0xc4ac5665, 23);
// Round 4 - F4 function
MD5STEP(F4, a, b, c, d, input[ 0]+0xf4292244, 6);
MD5STEP(F4, d, a, b, c, input[ 7]+0x432aff97, 10);
MD5STEP(F4, c, d, a, b, input[14]+0xab9423a7, 15);
MD5STEP(F4, b, c, d, a, input[ 5]+0xfc93a039, 21);
MD5STEP(F4, a, b, c, d, input[12]+0x655b59c3, 6);
MD5STEP(F4, d, a, b, c, input[ 3]+0x8f0ccc92, 10);
MD5STEP(F4, c, d, a, b, input[10]+0xffeff47d, 15);
MD5STEP(F4, b, c, d, a, input[ 1]+0x85845dd1, 21);
MD5STEP(F4, a, b, c, d, input[ 8]+0x6fa87e4f, 6);
MD5STEP(F4, d, a, b, c, input[15]+0xfe2ce6e0, 10);
MD5STEP(F4, c, d, a, b, input[ 6]+0xa3014314, 15);
MD5STEP(F4, b, c, d, a, input[13]+0x4e0811a1, 21);
MD5STEP(F4, a, b, c, d, input[ 4]+0xf7537e82, 6);
MD5STEP(F4, d, a, b, c, input[11]+0xbd3af235, 10);
MD5STEP(F4, c, d, a, b, input[ 2]+0x2ad7d2bb, 15);
MD5STEP(F4, b, c, d, a, input[ 9]+0xeb86d391, 21);
// Add the working variables back into the hash state
hash[0] += a;
hash[1] += b;
hash[2] += c;
hash[3] += d;
}