update readme

This commit is contained in:
Sky Johnson 2025-05-31 17:54:08 -05:00
parent 202664f635
commit c22638b51f

177
README.md
View File

@ -18,8 +18,6 @@ First, grab the package:
go get git.sharkk.net/Sky/LuaJIT-to-Go go get git.sharkk.net/Sky/LuaJIT-to-Go
``` ```
You'll need LuaJIT's development files, but don't worry - we include libraries for Windows and Linux in the vendor directory.
Here's the simplest thing you can do: Here's the simplest thing you can do:
```go ```go
L := luajit.New() // pass false to not load standard libs L := luajit.New() // pass false to not load standard libs
@ -36,25 +34,21 @@ Need even more performance? You can compile your Lua code to bytecode and reuse
```go ```go
// Compile once // Compile once
bytecode, err := L.CompileBytecode(` bytecode, err := L.CompileBytecode(`
local function calculate(x) local function calculate(x)
return x * x + x + 1 return x * x + x + 1
end end
return calculate(10) return calculate(10)
`, "calc") `, "calc")
// Execute many times // Execute many times
for i := 0; i < 1000; i++ { for i := 0; i < 1000; i++ {
err := L.LoadAndRunBytecode(bytecode, "calc") err := L.LoadAndRunBytecode(bytecode, "calc")
} }
// Or do both at once // Or do both at once
err := L.CompileAndRun(`return "hello"`, "greeting") err := L.CompileAndRun(`return "hello"`, "greeting")
``` ```
### When to Use Bytecode
Bytecode execution is consistently faster than direct execution:
``` ```
Benchmark Ops/sec Comparison Benchmark Ops/sec Comparison
---------------------------------------------------------------------------- ----------------------------------------------------------------------------
@ -70,21 +64,15 @@ BenchmarkComplexScript 33,133 Base
BenchmarkComplexScriptPrecompiled 41,044 +23.9% faster BenchmarkComplexScriptPrecompiled 41,044 +23.9% faster
``` ```
Use bytecode when you:
- Have code that runs frequently
- Need maximum performance
- Want to precompile your Lua code
- Are distributing Lua code to many instances
## Registering Go Functions ## Registering Go Functions
Want to call Go code from Lua? It's straightforward: Want to call Go code from Lua? It's straightforward:
```go ```go
// This function adds two numbers and returns the result // This function adds two numbers and returns the result
adder := func(s *luajit.State) int { adder := func(s *luajit.State) int {
sum := s.ToNumber(1) + s.ToNumber(2) sum := s.ToNumber(1) + s.ToNumber(2)
s.PushNumber(sum) s.PushNumber(sum)
return 1 // we're returning one value return 1 // we're returning one value
} }
L.RegisterGoFunction("add", adder) L.RegisterGoFunction("add", adder)
@ -95,22 +83,62 @@ Now in Lua:
result = add(40, 2) -- result = 42 result = add(40, 2) -- result = 42
``` ```
### Function Validation
Validate arguments easily:
```go
calculator := func(s *luajit.State) int {
if err := s.CheckArgs(
luajit.ArgSpec{Name: "x", Type: "number", Required: true, Check: luajit.CheckNumber},
luajit.ArgSpec{Name: "y", Type: "number", Required: true, Check: luajit.CheckNumber},
); err != nil {
return s.PushError(err.Error())
}
result := s.ToNumber(1) + s.ToNumber(2)
s.PushNumber(result)
return 1
}
```
## Working with Tables ## Working with Tables
Lua tables are pretty powerful - they're like a mix of Go's maps and slices. We make it easy to work with them: Lua tables are powerful - they're like a mix of Go's maps and slices. We make it easy to work with them:
```go ```go
// Go → Lua // Go → Lua
stuff := map[string]any{ stuff := map[string]any{
"name": "Arthur Dent", "name": "Arthur Dent",
"age": 30, "age": 30,
"items": []float64{1, 2, 3}, "items": []float64{1, 2, 3},
} }
L.PushTable(stuff) L.PushValue(stuff) // Handles all Go types automatically
// Lua → Go // Lua → Go with automatic type detection
L.GetGlobal("some_table") L.GetGlobal("some_table")
result, err := L.ToTable(-1) result, err := L.ToTable(-1) // Returns optimal Go type ([]int, map[string]string, etc.)
```
### Table Builder
Build tables fluently:
```go
L.NewTableBuilder().
SetString("name", "John").
SetNumber("age", 30).
SetBool("active", true).
SetArray("scores", []any{95, 87, 92}).
Build()
```
### Table Field Access
Get fields with defaults:
```go
L.GetGlobal("config")
host := L.GetFieldString(-1, "host", "localhost")
port := L.GetFieldNumber(-1, "port", 8080)
debug := L.GetFieldBool(-1, "debug", false)
``` ```
## Error Handling ## Error Handling
@ -118,34 +146,31 @@ result, err := L.ToTable(-1)
We provide useful errors instead of mysterious panics: We provide useful errors instead of mysterious panics:
```go ```go
if err := L.DoString("this isn't valid Lua!"); err != nil { if err := L.DoString("this isn't valid Lua!"); err != nil {
if luaErr, ok := err.(*luajit.LuaError); ok { if luaErr, ok := err.(*luajit.LuaError); ok {
fmt.Printf("Error: %s\n", luaErr.Message) fmt.Printf("Error in %s:%d - %s\n", luaErr.File, luaErr.Line, luaErr.Message)
} fmt.Printf("Stack trace:\n%s\n", luaErr.StackTrace)
}
} }
``` ```
## Memory Management ## Memory Management
The wrapper uses a custom table pooling system to reduce GC pressure when handling many tables: The wrapper uses bytecode buffer pooling to reduce allocations:
```go ```go
// Tables are pooled and reused internally for better performance // Bytecode buffers are pooled and reused internally
for i := 0; i < 1000; i++ { for i := 0; i < 1000; i++ {
L.GetGlobal("table") bytecode, _ := L.CompileBytecode(code, "test")
table, _ := L.ToTable(-1) // Buffer automatically returned to pool
// Use table...
L.Pop(1)
// Table is automatically returned to pool
} }
``` ```
The sandbox also manages its environment efficiently: Function pointers are managed safely:
```go ```go
// Environment objects are pooled and reused // Functions are registered in a thread-safe registry
for i := 0; i < 1000; i++ { L.RegisterGoFunction("myFunc", myGoFunc)
result, _ := sandbox.Run("return i + 1") defer L.Cleanup() // Cleans up all registered functions
}
``` ```
## Best Practices ## Best Practices
@ -160,7 +185,12 @@ for i := 0; i < 1000; i++ {
### Bytecode Optimization ### Bytecode Optimization
- Use bytecode for frequently executed code paths - Use bytecode for frequently executed code paths
- Consider compiling critical Lua code to bytecode at startup - Consider compiling critical Lua code to bytecode at startup
- For small scripts (< 1024 bytes), direct execution might be faster - For small scripts (< 1024 bytes), direct execution might be faster due to compilation overhead
### Type Conversion
- Use `ToTable()` for automagic type detection and optimized Go arrays/maps
- Use `PushValue()` for automagic Go-to-Lua conversion
- Leverage typed field accessors for config-style tables
## Advanced Features ## Advanced Features
@ -186,11 +216,11 @@ Bytecode properly preserves closures and upvalues:
```go ```go
code := ` code := `
local counter = 0 local counter = 0
return function() return function()
counter = counter + 1 counter = counter + 1
return counter return counter
end end
` `
bytecode, _ := L.CompileBytecode(code, "counter") bytecode, _ := L.CompileBytecode(code, "counter")
@ -198,14 +228,53 @@ L.LoadAndRunBytecodeWithResults(bytecode, "counter", 1)
L.SetGlobal("increment") L.SetGlobal("increment")
// Later... // Later...
L.GetGlobal("increment") results, _ := L.CallGlobal("increment") // Returns []any{1}
L.Call(0, 1) // Returns 1 results, _ = L.CallGlobal("increment") // Returns []any{2}
L.Pop(1)
L.GetGlobal("increment")
L.Call(0, 1) // Returns 2
``` ```
### Batch Execution
Execute multiple statements efficiently:
```go
statements := []string{
"x = 10",
"y = 20",
"result = x + y",
}
err := L.BatchExecute(statements)
```
### Package Path Management
Manage Lua module paths:
```go
L.SetPackagePath("./?.lua;./modules/?.lua")
L.AddPackagePath("./vendor/?.lua")
```
### Type Conversion System
The wrapper includes a comprehensive type conversion system:
```go
// Get typed values with automatic conversion
value, ok := luajit.GetTypedValue[int](L, -1)
global, ok := luajit.GetGlobalTyped[[]string](L, "myArray")
// Convert between compatible types
result, ok := luajit.ConvertValue[map[string]int](someMap)
```
## Performance Tips
- Use bytecode for repeated execution
- Prefer `CallGlobal()` for simple function calls
- Use typed field accessors for configuration parsing
- Leverage automatic type detection in `ToTable()`
- Pool your Lua states for high-throughput scenarios
## Need Help? ## Need Help?
Check out the tests in the repository - they're full of examples. If you're stuck, open an issue! We're here to help. Check out the tests in the repository - they're full of examples. If you're stuck, open an issue! We're here to help.