1
0
2024-07-22 08:52:28 -04:00

983 lines
25 KiB
C++

#include "map.h"
#include "raycast_mesh.h"
#include "../../common/Log.h"
#ifdef WIN32
#define _snprintf snprintf
#include <WinSock2.h>
#include <windows.h>
#endif
#include <algorithm>
#include <map>
#include <memory>
#include <tuple>
#include <vector>
#include <fstream>
#include <iostream>
#include <boost/regex.hpp>
#include <boost/filesystem.hpp>
#include <boost/foreach.hpp>
#include <boost/asio.hpp>
#include <boost/iostreams/filtering_streambuf.hpp>
#include <boost/iostreams/copy.hpp>
#include <boost/iostreams/filter/gzip.hpp>
struct Map::impl
{
RaycastMesh *rm;
};
inline bool file_exists(const std::string& name) {
std::ifstream f(name.c_str());
return f.good();
}
ThreadReturnType LoadMapAsync(void* mapToLoad)
{
Map* map = (Map*)mapToLoad;
map->SetMapLoaded(false);
std::string filename = "Maps/";
filename += map->GetFileName();
std::string deflatedFileName = filename + ".EQ2MapDeflated";
filename += ".EQ2Map";
if(file_exists(deflatedFileName))
filename = deflatedFileName;
map->SetFileName(filename);
if (map->Load(filename))
map->SetMapLoaded(true);
map->SetMapLoading(false);
THREAD_RETURN(NULL);
}
Map::Map(string zonename, string file) {
CheckMapMutex.SetName(file + "MapMutex");
SetMapLoaded(false);
m_ZoneName = zonename;
m_ZoneFile = file;
imp = nullptr;
m_MinY = 9999999.0f;
m_MaxY = -9999999.0f;
}
Map::~Map() {
SetMapLoaded(false);
if(imp) {
imp->rm->release();
safe_delete(imp);
}
std::map<int32,GridMapBorder*>::iterator itr;
for(itr = grid_map_border.begin(); itr != grid_map_border.end(); itr++) {
safe_delete(itr->second);
}
grid_map_border.clear();
}
float Map::FindBestZ(glm::vec3 &start, glm::vec3 *result, std::map<int32, bool>* ignored_widgets, uint32* GridID, uint32* WidgetID)
{
if (!IsMapLoaded())
return BEST_Z_INVALID;
if (!imp)
return BEST_Z_INVALID;
glm::vec3 tmp;
if(!result)
result = &tmp;
start.z += 1.0f;//RuleI(Map, FindBestZHeightAdjust);
glm::vec3 from(start.x, start.y, start.z);
glm::vec3 to(start.x, start.y, BEST_Z_INVALID);
float hit_distance;
bool hit = false;
hit = imp->rm->raycast((const RmReal*)&from, (const RmReal*)&to, (RmReal*)result, nullptr, &hit_distance, (RmUint32*)GridID, (RmUint32*)WidgetID, (RmMap*)ignored_widgets);
if(hit) {
return result->z;
}
// Find nearest Z above us
to.z = -BEST_Z_INVALID;
hit = imp->rm->raycast((const RmReal*)&from, (const RmReal*)&to, (RmReal*)result, nullptr, &hit_distance, (RmUint32*)GridID, (RmUint32*)WidgetID, (RmMap*)ignored_widgets);
if (hit)
{
return result->z;
}
return BEST_Z_INVALID;
}
float Map::FindClosestZ(glm::vec3 &start, glm::vec3 *result, std::map<int32, bool>* ignored_widgets, uint32 *GridID, uint32* WidgetID) {
if (!IsMapLoaded())
return false;
// Unlike FindBestZ, this method finds the closest Z value above or below the specified point.
//
if (!imp)
return false;
float ClosestZ = BEST_Z_INVALID;
glm::vec3 tmp;
if (!result)
result = &tmp;
glm::vec3 from(start.x, start.y, start.z);
glm::vec3 to(start.x, start.y, BEST_Z_INVALID);
float hit_distance;
bool hit = false;
// first check is below us
hit = imp->rm->raycast((const RmReal*)&from, (const RmReal*)&to, (RmReal*)result, nullptr, &hit_distance, (RmUint32*)GridID, (RmUint32*)WidgetID, (RmMap*)ignored_widgets);
if (hit) {
ClosestZ = result->z;
}
// Find nearest Z above us
to.z = -BEST_Z_INVALID;
hit = imp->rm->raycast((const RmReal*)&from, (const RmReal*)&to, (RmReal*)result, nullptr, &hit_distance, (RmUint32*)GridID, (RmUint32*)WidgetID, (RmMap*)ignored_widgets);
if (hit) {
if (std::abs(from.z - result->z) < std::abs(ClosestZ - from.z))
return result->z;
}
return ClosestZ;
}
bool Map::LineIntersectsZone(glm::vec3 start, glm::vec3 end, float step, std::map<int32, bool>* ignored_widgets, glm::vec3 *result) {
if (!IsMapLoaded())
return false;
if(!imp)
return false;
return imp->rm->raycast((const RmReal*)&start, (const RmReal*)&end, (RmReal*)result, nullptr, nullptr, nullptr, nullptr, (RmMap*)ignored_widgets);
}
bool Map::LineIntersectsZoneNoZLeaps(glm::vec3 start, glm::vec3 end, float step_mag, std::map<int32, bool>* ignored_widgets, glm::vec3 *result) {
if (!IsMapLoaded())
return false;
if (!imp)
return false;
float z = BEST_Z_INVALID;
glm::vec3 step;
glm::vec3 cur;
cur.x = start.x;
cur.y = start.y;
cur.z = start.z;
step.x = end.x - start.x;
step.y = end.y - start.y;
step.z = end.z - start.z;
float factor = step_mag / sqrt(step.x*step.x + step.y*step.y + step.z*step.z);
step.x *= factor;
step.y *= factor;
step.z *= factor;
int steps = 0;
if (step.x > 0 && step.x < 0.001f)
step.x = 0.001f;
if (step.y > 0 && step.y < 0.001f)
step.y = 0.001f;
if (step.z > 0 && step.z < 0.001f)
step.z = 0.001f;
if (step.x < 0 && step.x > -0.001f)
step.x = -0.001f;
if (step.y < 0 && step.y > -0.001f)
step.y = -0.001f;
if (step.z < 0 && step.z > -0.001f)
step.z = -0.001f;
//while we are not past end
//always do this once, even if start == end.
while(cur.x != end.x || cur.y != end.y || cur.z != end.z)
{
steps++;
glm::vec3 me;
me.x = cur.x;
me.y = cur.y;
me.z = cur.z;
glm::vec3 hit;
float best_z = FindBestZ(me, &hit, ignored_widgets);
float diff = best_z - z;
diff = diff < 0 ? -diff : diff;
if (z <= BEST_Z_INVALID || best_z <= BEST_Z_INVALID || diff < 12.0)
z = best_z;
else
return true;
//look at current location
if(LineIntersectsZone(start, end, step_mag, ignored_widgets, result))
{
return true;
}
//move 1 step
if (cur.x != end.x)
cur.x += step.x;
if (cur.y != end.y)
cur.y += step.y;
if (cur.z != end.z)
cur.z += step.z;
//watch for end conditions
if ( (cur.x > end.x && end.x >= start.x) || (cur.x < end.x && end.x <= start.x) || (step.x == 0) ) {
cur.x = end.x;
}
if ( (cur.y > end.y && end.y >= start.y) || (cur.y < end.y && end.y <= start.y) || (step.y == 0) ) {
cur.y = end.y;
}
if ( (cur.z > end.z && end.z >= start.z) || (cur.z < end.z && end.z < start.z) || (step.z == 0) ) {
cur.z = end.z;
}
}
//walked entire line and didnt run into anything...
return false;
}
bool Map::CheckLoS(glm::vec3 myloc, glm::vec3 oloc, std::map<int32, bool>* ignored_widgets)
{
if (!IsMapLoaded())
return false;
if(!imp)
return false;
return !imp->rm->raycast((const RmReal*)&myloc, (const RmReal*)&oloc, nullptr, nullptr, nullptr, nullptr, nullptr, (RmMap*)ignored_widgets);
}
// returns true if a collision happens
bool Map::DoCollisionCheck(glm::vec3 myloc, glm::vec3 oloc, std::map<int32, bool>* ignored_widgets, glm::vec3 &outnorm, float &distance) {
if (!IsMapLoaded())
return false;
if(!imp)
return false;
return imp->rm->raycast((const RmReal*)&myloc, (const RmReal*)&oloc, nullptr, (RmReal *)&outnorm, (RmReal *)&distance, nullptr, nullptr, (RmMap*)ignored_widgets);
}
Map *Map::LoadMapFile(std::string zonename, std::string file) {
std::string filename = "Maps/";
filename += file;
std::string deflatedFileName = filename + ".EQ2MapDeflated";
filename += ".EQ2Map";
if(file_exists(deflatedFileName))
filename = deflatedFileName;
LogWrite(MAP__INFO, 7, "Map", "Attempting to load Map File [{%s}]", filename.c_str());
auto m = new Map(zonename, file);
m->SetMapLoading(true);
m->SetFileName(filename);
#ifdef WIN32
_beginthread(LoadMapAsync, 0, (void*)m);
#else
pthread_t t1;
pthread_create(&t1, NULL, LoadMapAsync, (void*)m);
pthread_detach(t1);
#endif
return m;
}
/**
* @param filename
* @return
*/
bool Map::Load(const std::string &filename)
{
FILE *map_file = fopen(filename.c_str(), "rb");
if (map_file) {
LogWrite(MAP__INFO, 7, "Map", "Loading Map File [{%s}]", filename.c_str());
bool loaded_map_file = LoadV2(map_file);
fclose(map_file);
if (loaded_map_file) {
LogWrite(MAP__INFO, 7, "Map", "Loaded Map File [{%s}]", filename.c_str());
}
else {
LogWrite(MAP__ERROR, 7, "Map", "FAILED Loading Map File [{%s}]", filename.c_str());
}
return loaded_map_file;
}
else {
return false;
}
return false;
}
struct ModelEntry
{
struct Poly
{
uint32 v1, v2, v3;
uint8 vis;
};
std::vector<glm::vec3> verts;
std::vector<Poly> polys;
};
bool Map::LoadV2(FILE* f) {
std::size_t foundDeflated = m_FileName.find(".EQ2MapDeflated");
if(foundDeflated != std::string::npos)
return LoadV2Deflated(f);
// Read the string for the zone file name this was created for
int8 strSize;
char name[256];
fread(&strSize, sizeof(int8), 1, f);
LogWrite(MAP__DEBUG, 0, "Map", "strSize = %u", strSize);
size_t len = fread(&name, sizeof(char), strSize, f);
name[len] = '\0';
LogWrite(MAP__DEBUG, 0, "Map", "name = %s", name);
string fileName(name);
std::size_t found = fileName.find(m_ZoneName);
// Make sure file contents are for the correct zone
if (found == std::string::npos) {
fclose(f);
LogWrite(MAP__ERROR, 0, "Map", "Map::LoadV2() map contents (%s) do not match its name (%s).", &name, m_ZoneName.c_str());
return false;
}
// Read the min bounds
fread(&m_MinX, sizeof(float), 1, f);
fread(&m_MinZ, sizeof(float), 1, f);
// Read the max bounds
fread(&m_MaxX, sizeof(float), 1, f);
fread(&m_MaxZ, sizeof(float), 1, f);
// Read the number of grids
int32 NumGrids;
fread(&NumGrids, sizeof(int32), 1, f);
std::vector<glm::vec3> verts;
std::vector<uint32> indices;
std::vector<uint32> grids;
std::vector<uint32> widgets;
uint32 face_count = 0;
// Loop through the grids loading the face list
for (int32 i = 0; i < NumGrids; i++) {
// Read the grid id
int32 GridID;
fread(&GridID, sizeof(int32), 1, f);
// Read the number of vertices
int32 NumFaces;
fread(&NumFaces, sizeof(int32), 1, f);
face_count += NumFaces;
// Loop through the vertices list reading
// 3 at a time to creat a triangle (face)
GridMapBorder* border = GetMapGridBorder(GridID);
for (int32 y = 0; y < NumFaces; ) {
// Each vertex need an x,y,z coordinate and
// we will be reading 3 to create the face
float x1, x2, x3;
float y1, y2, y3;
float z1, z2, z3;
// Read the first vertex
fread(&x1, sizeof(float), 1, f);
fread(&y1, sizeof(float), 1, f);
fread(&z1, sizeof(float), 1, f);
y++;
// Read the second vertex
fread(&x2, sizeof(float), 1, f);
fread(&y2, sizeof(float), 1, f);
fread(&z2, sizeof(float), 1, f);
y++;
// Read the third (final) vertex
fread(&x3, sizeof(float), 1, f);
fread(&y3, sizeof(float), 1, f);
fread(&z3, sizeof(float), 1, f);
y++;
glm::vec3 a(x1, z1, y1);
glm::vec3 b(x2, z2, y2);
glm::vec3 c(x3, z3, y3);
MapMinMaxY(y1);
MapMinMaxY(y2);
MapMinMaxY(y3);
size_t sz = verts.size();
verts.push_back(a);
indices.push_back((uint32)sz);
verts.push_back(b);
indices.push_back((uint32)sz + 1);
verts.push_back(c);
indices.push_back((uint32)sz + 2);
grids.push_back((uint32)GridID);
widgets.push_back((uint32)0);
MapGridMinMaxBorderArray(border, a, b, c);
}
}
face_count = face_count / 3;
if (imp) {
imp->rm->release();
imp->rm = nullptr;
}
else {
imp = new impl;
}
imp->rm = createRaycastMesh((RmUint32)verts.size(), (const RmReal*)&verts[0], face_count, &indices[0], &grids[0], &widgets[0]);
if (!imp->rm) {
delete imp;
imp = nullptr;
return false;
}
return true;
}
bool Map::LoadV3Deflated(std::ifstream* file, std::streambuf * const srcbuf) {
std::vector<glm::vec3> verts;
std::vector<uint32> indices;
std::vector<uint32> grids;
std::vector<uint32> widgets;
int8 strSize = 0;
char* buf = new char[1024];
int32 mapVersion = 0;
srcbuf->sgetn(buf,sizeof(int32));
memcpy(&mapVersion,&buf[0],sizeof(int32));
LogWrite(MAP__DEBUG, 0, "Map", "MapVersion = %u", mapVersion);
srcbuf->sgetn(buf,sizeof(int8));
memcpy(&strSize,&buf[0],sizeof(int8));
LogWrite(MAP__DEBUG, 0, "Map", "strSize = %u", strSize);
char name[256];
srcbuf->sgetn(&name[0],strSize);
name[strSize] = '\0';
LogWrite(MAP__DEBUG, 0, "Map", "name = %s", name);
string fileName(name);
std::size_t found = fileName.find(m_ZoneName);
// Make sure file contents are for the correct zone
if (found == std::string::npos) {
file->close();
safe_delete_array(buf);
LogWrite(MAP__ERROR, 0, "Map", "Map::LoadV3Deflated() map contents (%s) do not match its name (%s).", &name, m_ZoneFile.c_str());
return false;
}
// Read the min bounds
srcbuf->sgetn(buf,sizeof(float));
memcpy(&m_MinX,&buf[0],sizeof(float));
srcbuf->sgetn(buf,sizeof(float));
memcpy(&m_MinY,&buf[0],sizeof(float));
srcbuf->sgetn(buf,sizeof(float));
memcpy(&m_MinZ,&buf[0],sizeof(float));
srcbuf->sgetn(buf,sizeof(float));
memcpy(&m_MaxX,&buf[0],sizeof(float));
srcbuf->sgetn(buf,sizeof(float));
memcpy(&m_MaxY,&buf[0],sizeof(float));
srcbuf->sgetn(buf,sizeof(float));
memcpy(&m_MaxZ,&buf[0],sizeof(float));
// Read the number of grids
int32 NumGrids;
srcbuf->sgetn(buf,sizeof(int32));
memcpy(&NumGrids,&buf[0],sizeof(int32));
uint32 face_count = 0;
// Loop through the grids loading the face list
for (int32 i = 0; i < NumGrids; i++) {
// Read the grid id
int32 GridID;
srcbuf->sgetn(buf,sizeof(int32));
memcpy(&GridID,&buf[0],sizeof(int32));
// Read the number of vertices
int32 vertex_map_count;
srcbuf->sgetn(buf,sizeof(int32));
memcpy(&vertex_map_count,&buf[0],sizeof(int32));
GridMapBorder* border = GetMapGridBorder(GridID);
for(int32 m = 0; m < vertex_map_count; m++) {
int32 WidgetID;
srcbuf->sgetn(buf,sizeof(int32));
memcpy(&WidgetID,&buf[0],sizeof(int32));
float w_x1, w_y1, w_z1;
// read widget coords
srcbuf->sgetn(buf,sizeof(float)*3);
memcpy(&w_x1,&buf[0],sizeof(float));
memcpy(&w_y1,&buf[4],sizeof(float));
memcpy(&w_z1,&buf[8],sizeof(float));
glm::vec3 a(w_x1, w_y1, w_z1);
widget_map.insert(make_pair(WidgetID, a));
int32 NumFaces;
srcbuf->sgetn(buf,sizeof(int32));
memcpy(&NumFaces,&buf[0],sizeof(int32));
face_count += NumFaces;
for (int32 y = 0; y < NumFaces; ) {
// Each vertex need an x,y,z coordinate and
// we will be reading 3 to create the face
float x1, x2, x3;
float y1, y2, y3;
float z1, z2, z3;
// Read the first vertex
srcbuf->sgetn(buf,sizeof(float)*3);
memcpy(&x1,&buf[0],sizeof(float));
memcpy(&y1,&buf[4],sizeof(float));
memcpy(&z1,&buf[8],sizeof(float));
y++;
// Read the second vertex
srcbuf->sgetn(buf,sizeof(float)*3);
memcpy(&x2,&buf[0],sizeof(float));
memcpy(&y2,&buf[4],sizeof(float));
memcpy(&z2,&buf[8],sizeof(float));
y++;
// Read the third (final) vertex
srcbuf->sgetn(buf,sizeof(float)*3);
memcpy(&x3,&buf[0],sizeof(float));
memcpy(&y3,&buf[4],sizeof(float));
memcpy(&z3,&buf[8],sizeof(float));
y++;
glm::vec3 a(x1, z1, y1);
glm::vec3 b(x2, z2, y2);
glm::vec3 c(x3, z3, y3);
size_t sz = verts.size();
verts.push_back(a);
indices.push_back((uint32)sz);
verts.push_back(b);
indices.push_back((uint32)sz + 1);
verts.push_back(c);
indices.push_back((uint32)sz + 2);
grids.push_back(GridID);
widgets.push_back(WidgetID);
MapGridMinMaxBorderArray(border, a, b, c);
}
}
// Loop through the vertices list reading
// 3 at a time to creat a triangle (face)
}
face_count = face_count / 3;
if (imp) {
imp->rm->release();
imp->rm = nullptr;
}
else {
imp = new impl;
}
imp->rm = createRaycastMesh((RmUint32)verts.size(), (const RmReal*)&verts[0], face_count, &indices[0], &grids[0], &widgets[0]);
file->close();
safe_delete_array(buf);
if (!imp->rm) {
delete imp;
imp = nullptr;
return false;
}
return true;
}
bool Map::LoadV2Deflated(FILE* f) {
std::ifstream file(m_FileName.c_str(), ios_base::in | ios_base::binary);
boost::iostreams::filtering_streambuf<boost::iostreams::input> inbuf;
inbuf.push(boost::iostreams::gzip_decompressor());
inbuf.push(file);
ostream out(&inbuf);
std::streambuf * const srcbuf = out.rdbuf();
std::streamsize size = srcbuf->in_avail();
if(size == -1)
{
file.close();
LogWrite(MAP__ERROR, 0, "Map", "Map::LoadV2Deflated() unable to deflate (%s).", m_ZoneFile.c_str());
return false;
}
// Read the string for the zone file name this was created for
int8 strSize;
char* buf = new char[1024];
srcbuf->sgetn(buf,sizeof(int8));
memcpy(&strSize,&buf[0],sizeof(int8));
LogWrite(MAP__DEBUG, 0, "Map", "strSize = %u", strSize);
char name[256];
srcbuf->sgetn(&name[0],strSize);
name[strSize] = '\0';
LogWrite(MAP__DEBUG, 0, "Map", "name = %s", name);
string fileName(name);
if(fileName.find("EQ2EmuMapTool") != std::string::npos) {
safe_delete_array(buf);
return(LoadV3Deflated(&file, srcbuf));
}
std::size_t found = fileName.find(m_ZoneName);
// Make sure file contents are for the correct zone
if (found == std::string::npos) {
file.close();
safe_delete_array(buf);
LogWrite(MAP__ERROR, 0, "Map", "Map::LoadV2Deflated() map contents (%s) do not match its name (%s).", &name, m_ZoneFile.c_str());
return false;
}
// Read the min bounds
srcbuf->sgetn(buf,sizeof(float));
memcpy(&m_MinX,&buf[0],sizeof(float));
srcbuf->sgetn(buf,sizeof(float));
memcpy(&m_MinZ,&buf[0],sizeof(float));
srcbuf->sgetn(buf,sizeof(float));
memcpy(&m_MaxX,&buf[0],sizeof(float));
srcbuf->sgetn(buf,sizeof(float));
memcpy(&m_MaxZ,&buf[0],sizeof(float));
// Read the number of grids
int32 NumGrids;
srcbuf->sgetn(buf,sizeof(int32));
memcpy(&NumGrids,&buf[0],sizeof(int32));
std::vector<glm::vec3> verts;
std::vector<uint32> indices;
std::vector<uint32> grids;
std::vector<uint32> widgets;
uint32 face_count = 0;
// Loop through the grids loading the face list
for (int32 i = 0; i < NumGrids; i++) {
// Read the grid id
int32 GridID;
srcbuf->sgetn(buf,sizeof(int32));
memcpy(&GridID,&buf[0],sizeof(int32));
// Read the number of vertices
int32 NumFaces;
srcbuf->sgetn(buf,sizeof(int32));
memcpy(&NumFaces,&buf[0],sizeof(int32));
face_count += NumFaces;
// Loop through the vertices list reading
// 3 at a time to creat a triangle (face)
GridMapBorder* border = GetMapGridBorder(GridID);
for (int32 y = 0; y < NumFaces; ) {
// Each vertex need an x,y,z coordinate and
// we will be reading 3 to create the face
float x1, x2, x3;
float y1, y2, y3;
float z1, z2, z3;
// Read the first vertex
srcbuf->sgetn(buf,sizeof(float)*3);
memcpy(&x1,&buf[0],sizeof(float));
memcpy(&y1,&buf[4],sizeof(float));
memcpy(&z1,&buf[8],sizeof(float));
y++;
// Read the second vertex
srcbuf->sgetn(buf,sizeof(float)*3);
memcpy(&x2,&buf[0],sizeof(float));
memcpy(&y2,&buf[4],sizeof(float));
memcpy(&z2,&buf[8],sizeof(float));
y++;
// Read the third (final) vertex
srcbuf->sgetn(buf,sizeof(float)*3);
memcpy(&x3,&buf[0],sizeof(float));
memcpy(&y3,&buf[4],sizeof(float));
memcpy(&z3,&buf[8],sizeof(float));
y++;
glm::vec3 a(x1, z1, y1);
glm::vec3 b(x2, z2, y2);
glm::vec3 c(x3, z3, y3);
MapMinMaxY(y1);
MapMinMaxY(y2);
MapMinMaxY(y3);
size_t sz = verts.size();
verts.push_back(a);
indices.push_back((uint32)sz);
verts.push_back(b);
indices.push_back((uint32)sz + 1);
verts.push_back(c);
indices.push_back((uint32)sz + 2);
grids.push_back(GridID);
widgets.push_back((uint32)0);
MapGridMinMaxBorderArray(border, a, b, c);
}
}
face_count = face_count / 3;
if (imp) {
imp->rm->release();
imp->rm = nullptr;
}
else {
imp = new impl;
}
imp->rm = createRaycastMesh((RmUint32)verts.size(), (const RmReal*)&verts[0], face_count, &indices[0], &grids[0], &widgets[0]);
file.close();
safe_delete_array(buf);
if (!imp->rm) {
delete imp;
imp = nullptr;
return false;
}
return true;
}
void Map::RotateVertex(glm::vec3 &v, float rx, float ry, float rz) {
glm::vec3 nv = v;
nv.y = (std::cos(rx) * v.y) - (std::sin(rx) * v.z);
nv.z = (std::sin(rx) * v.y) + (std::cos(rx) * v.z);
v = nv;
nv.x = (std::cos(ry) * v.x) + (std::sin(ry) * v.z);
nv.z = -(std::sin(ry) * v.x) + (std::cos(ry) * v.z);
v = nv;
nv.x = (std::cos(rz) * v.x) - (std::sin(rz) * v.y);
nv.y = (std::sin(rz) * v.x) + (std::cos(rz) * v.y);
v = nv;
}
void Map::ScaleVertex(glm::vec3 &v, float sx, float sy, float sz) {
v.x = v.x * sx;
v.y = v.y * sy;
v.z = v.z * sz;
}
void Map::TranslateVertex(glm::vec3 &v, float tx, float ty, float tz) {
v.x = v.x + tx;
v.y = v.y + ty;
v.z = v.z + tz;
}
void Map::MapMinMaxY(float y) {
if(y < m_MinY)
m_MinY = y;
if(y > m_MaxY)
m_MaxY = y;
}
void Map::MapGridMinMaxBorderArray(GridMapBorder* border, glm::vec3 a, glm::vec3 b, glm::vec3 c) {
if(!border)
return;
MapGridMinMaxBorder(border, a);
MapGridMinMaxBorder(border, b);
MapGridMinMaxBorder(border, c);
}
void Map::MapGridMinMaxBorder(GridMapBorder* border, glm::vec3 a) {
if(!border)
return;
if(a.x < border->m_MinX)
border->m_MinX = a.x;
if(a.x > border->m_MaxX)
border->m_MaxX = a.x;
if(a.y < border->m_MinY)
border->m_MinY = a.y;
if(a.y > border->m_MaxY)
border->m_MaxY = a.y;
if(a.z < border->m_MinZ)
border->m_MinZ = a.z;
if(a.z > border->m_MaxZ)
border->m_MaxZ = a.z;
}
bool Map::IsPointInGrid(GridMapBorder* border, glm::vec3 a, float radius) {
return border != nullptr && (a.x >= (border->m_MinX - radius) && a.x <= (border->m_MaxX + radius) && a.y >= (border->m_MinY - radius) && a.y <= (border->m_MaxY + radius) && a.z >= (border->m_MinZ - radius) && a.z <= (border->m_MaxZ + radius));
}
std::vector<int32> Map::GetGridsByPoint(glm::vec3 a, float radius) {
std::vector<int32> grids;
std::map<int32,GridMapBorder*>::iterator itr;
for(itr = grid_map_border.begin(); itr != grid_map_border.end(); itr++) {
if(IsPointInGrid(itr->second, a, radius)) {
grids.push_back(itr->first);
}
}
return grids;
}
GridMapBorder* Map::GetMapGridBorder(int32 grid_id, bool instantiate_border) {
std::map<int32,GridMapBorder*>::iterator itr = grid_map_border.find(grid_id);
GridMapBorder* border = nullptr;
if(itr != grid_map_border.end()) {
border = itr->second;
}
else if(instantiate_border) {
border = new GridMapBorder;
border->m_MinX = 999999.0f;
border->m_MaxX = -999999.0f;
border->m_MinY = 999999.0f;
border->m_MaxY = -999999.0f;
border->m_MinZ = 999999.0f;
border->m_MaxZ = -999999.0f;
grid_map_border.insert(make_pair(grid_id, border));
}
return border;
}
void MapRange::AddVersionRange(std::string zoneName) {
boost::filesystem::path targetDir("Maps/");
// crash fix since the dir isn't present
if(!boost::filesystem::is_directory(targetDir))
{
LogWrite(MAP__ERROR, 7, "Map", "Unable to find directory %s", targetDir.c_str());
return;
}
boost::filesystem::recursive_directory_iterator iter(targetDir), eod;
boost::smatch base_match;
std::string formula = "(.*\\/|.*\\\\)((" + zoneName + ")(\\-([0-9]+)\\-([0-9]+))?)(\\.EQ2Map|\\.EQ2MapDeflated)$";
boost::regex re(formula.c_str());
LogWrite(MAP__INFO, 0, "Map", "Map Formula to match: %s", formula.c_str());
BOOST_FOREACH(boost::filesystem::path
const & i, make_pair(iter, eod)) {
if (is_regular_file(i)) {
std::string fileName(i.string());
if (boost::regex_match(fileName, base_match, re)) {
boost::ssub_match base_sub_match = base_match[2];
boost::ssub_match base_sub_match2 = base_match[5];
boost::ssub_match base_sub_match3 = base_match[6];
std::string baseMatch(base_sub_match.str().c_str());
std::string baseMatch2(base_sub_match2.str().c_str());
std::string baseMatch3(base_sub_match3.str().c_str());
LogWrite(MAP__INFO, 0, "Map", "Map To Load: %s, size: %i, string: %s, min: %s, max: %s\n", i.string().c_str(), base_match.size(), baseMatch.c_str(), baseMatch2.c_str(), baseMatch3.c_str());
Map * zonemap = Map::LoadMapFile(zoneName, base_sub_match.str().c_str());
int32 min_version = 0, max_version = 0;
if (strlen(base_sub_match2.str().c_str()) > 0)
min_version = atoul(base_sub_match2.str().c_str());
if (strlen(base_sub_match2.str().c_str()) > 0)
max_version = atoul(base_sub_match3.str().c_str());
version_map.insert(std::make_pair(new VersionRange(min_version, max_version), zonemap));
}
}
}
}
MapRange::MapRange()
{
}
MapRange::~MapRange()
{
Clear();
}
void MapRange::Clear()
{
map<VersionRange*, Map*>::iterator itr;
for (itr = version_map.begin(); itr != version_map.end(); itr++)
{
VersionRange* range = itr->first;
Map* map = itr->second;
delete range;
delete map;
}
version_map.clear();
}
map<VersionRange*, Map*>::iterator MapRange::FindVersionRange(int32 min_version, int32 max_version)
{
map<VersionRange*, Map*>::iterator itr;
for (itr = version_map.begin(); itr != version_map.end(); itr++)
{
VersionRange* range = itr->first;
// if min and max version are both in range
if (range->GetMinVersion() <= min_version && max_version <= range->GetMaxVersion())
return itr;
// if the min version is in range, but max range is 0
else if (range->GetMinVersion() <= min_version && range->GetMaxVersion() == 0)
return itr;
// if min version is 0 and max_version has a cap
else if (range->GetMinVersion() == 0 && max_version <= range->GetMaxVersion())
return itr;
}
return version_map.end();
}
map<VersionRange*, Map*>::iterator MapRange::FindMapByVersion(int32 version)
{
map<VersionRange*, Map*>::iterator enditr = version_map.end();
map<VersionRange*, Map*>::iterator itr;
for (itr = version_map.begin(); itr != version_map.end(); itr++)
{
VersionRange* range = itr->first;
// if min and max version are both in range
if(range->GetMinVersion() == 0 && range->GetMaxVersion() == 0)
enditr = itr;
else if (version >= range->GetMinVersion() && version <= range->GetMaxVersion())
return itr;
}
return enditr;
}