Upload single-header library and test program

This commit is contained in:
Sky Johnson 2025-06-16 11:26:19 -05:00
parent 374fd690cb
commit 4ef162f9b5
4 changed files with 855 additions and 2 deletions

2
.gitignore vendored
View File

@ -31,4 +31,4 @@
*.exe
*.out
*.app
test

143
README.md
View File

@ -1,3 +1,144 @@
# Sockeye
Easy-to-use C++ library for utilizing sockets.
An easy-to-use, fast socket C++ library! Uses epoll on Linux, kqueue on BSD/macOS.
## API Reference
### sockeye::Socket
Main server class for handling TCP connections.
#### Constructor
```cpp
explicit Socket(uint16_t port = 8080)
```
#### Methods
**`bool start()`**
Initialize the server socket and event system. Returns `true` on success.
**`void run()`**
Start the event loop. Blocks until `stop()` is called.
**`void stop()`**
Stop the server and exit the event loop.
**`void on_connection(ConnectionHandler handler)`**
Set callback for new client connections.
**`void on_data(DataHandler handler)`**
Set callback for incoming data from clients.
**`void on_disconnect(DisconnectHandler handler)`**
Set callback for client disconnections.
#### Handler Types
```cpp
using ConnectionHandler = std::function<void(int client_fd)>;
using DataHandler = std::function<void(int client_fd, const char* data, size_t len)>;
using DisconnectHandler = std::function<void(int client_fd)>;
```
## Examples
### Basic Echo Server
```cpp
#include "sockeye.hpp"
#include <iostream>
#include <cstring>
int main() {
sockeye::Socket server(8080);
server.on_connection([](int client_fd) {
std::cout << "Client connected: " << client_fd << std::endl;
});
server.on_data([](int client_fd, const char* data, size_t len) {
// Echo data back to client
send(client_fd, data, len, 0);
});
server.on_disconnect([](int client_fd) {
std::cout << "Client disconnected: " << client_fd << std::endl;
});
if (!server.start()) {
std::cerr << "Failed to start server" << std::endl;
return 1;
}
server.run();
return 0;
}
```
### HTTP-like Server
```cpp
#include "sockeye.hpp"
#include <iostream>
#include <string>
int main() {
sockeye::Socket server(8080);
server.on_data([](int client_fd, const char* data, size_t len) {
std::string request(data, len);
// Simple HTTP response
std::string response =
"HTTP/1.1 200 OK\r\n"
"Content-Length: 13\r\n"
"Connection: close\r\n\r\n"
"Hello, World!";
send(client_fd, response.c_str(), response.length(), 0);
close(client_fd);
});
if (!server.start()) {
std::cerr << "Failed to start server" << std::endl;
return 1;
}
std::cout << "Server listening on port 8080" << std::endl;
server.run();
return 0;
}
```
### Graceful Shutdown
```cpp
#include "sockeye.hpp"
#include <signal.h>
sockeye::Socket* server_ptr = nullptr;
void signal_handler(int signal) {
if (server_ptr) {
server_ptr->stop();
}
}
int main() {
sockeye::Socket server(8080);
server_ptr = &server;
signal(SIGINT, signal_handler);
signal(SIGTERM, signal_handler);
// Set up handlers...
if (!server.start()) {
return 1;
}
server.run();
return 0;
}
```

363
sockeye.hpp Normal file
View File

@ -0,0 +1,363 @@
#pragma once
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <array>
#include <vector>
#include <unordered_map>
#include <functional>
#ifdef __linux__
#include <sys/epoll.h>
#elif defined(__APPLE__) || defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__NetBSD__)
#include <sys/event.h>
#else
#error "Unsupported platform - requires Linux or BSD/macOS"
#endif
namespace sockeye {
class BufferPool {
public:
static constexpr size_t BUFFER_SIZE = 4096;
explicit BufferPool(size_t pool_size = 1024) {
buffers_.reserve(pool_size);
for (size_t i = 0; i < pool_size; ++i) {
buffers_.emplace_back(BUFFER_SIZE);
}
}
std::vector<char>* acquire() {
if (buffers_.empty()) {
return new std::vector<char>(BUFFER_SIZE);
}
auto* buffer = new std::vector<char>(std::move(buffers_.back()));
buffers_.pop_back();
return buffer;
}
void release(std::vector<char>* buffer) {
if (!buffer) return;
if (buffers_.size() < buffers_.capacity()) {
buffer->clear();
buffer->resize(BUFFER_SIZE);
buffers_.emplace_back(std::move(*buffer));
delete buffer;
} else {
delete buffer;
}
}
private:
std::vector<std::vector<char>> buffers_;
};
struct ClientBuffer {
std::vector<char>* read_buffer = nullptr;
size_t bytes_read = 0;
};
class SocketBase {
public:
using ConnectionHandler = std::function<void(int client_fd)>;
using DataHandler = std::function<void(int client_fd, const char* data, size_t len)>;
using DisconnectHandler = std::function<void(int client_fd)>;
explicit SocketBase(uint16_t port = 8080) : port_(port) {}
virtual ~SocketBase() {
cleanup_resources();
}
virtual bool start() = 0;
virtual void run() = 0;
void stop() { running_ = false; }
void on_connection(ConnectionHandler handler) { on_connection_ = std::move(handler); }
void on_data(DataHandler handler) { on_data_ = std::move(handler); }
void on_disconnect(DisconnectHandler handler) { on_disconnect_ = std::move(handler); }
protected:
static constexpr int LISTEN_BACKLOG = SOMAXCONN;
uint16_t port_;
int server_fd_ = -1;
bool running_ = true;
BufferPool buffer_pool_;
std::unordered_map<int, ClientBuffer> client_buffers_;
ConnectionHandler on_connection_;
DataHandler on_data_;
DisconnectHandler on_disconnect_;
void cleanup_resources() {
for (auto& [fd, client_buffer] : client_buffers_) {
buffer_pool_.release(client_buffer.read_buffer);
close(fd);
}
client_buffers_.clear();
if (server_fd_ != -1) close(server_fd_);
}
bool create_server_socket() {
server_fd_ = socket(AF_INET, SOCK_STREAM | SOCK_NONBLOCK | SOCK_CLOEXEC, 0);
if (server_fd_ == -1) return false;
int opt = 1;
if (setsockopt(server_fd_, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt)) == -1 ||
setsockopt(server_fd_, SOL_SOCKET, SO_REUSEPORT, &opt, sizeof(opt)) == -1 ||
setsockopt(server_fd_, IPPROTO_TCP, TCP_NODELAY, &opt, sizeof(opt)) == -1) {
return false;
}
sockaddr_in addr{};
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY;
addr.sin_port = htons(port_);
return bind(server_fd_, reinterpret_cast<sockaddr*>(&addr), sizeof(addr)) != -1 &&
listen(server_fd_, LISTEN_BACKLOG) != -1;
}
bool add_client_buffer(int client_fd) {
client_buffers_[client_fd] = {buffer_pool_.acquire(), 0};
return true;
}
void remove_client_common(int client_fd) {
auto it = client_buffers_.find(client_fd);
if (it != client_buffers_.end()) {
buffer_pool_.release(it->second.read_buffer);
client_buffers_.erase(it);
}
close(client_fd);
if (on_disconnect_) on_disconnect_(client_fd);
}
void accept_connections() {
while (true) {
sockaddr_in client_addr{};
socklen_t client_len = sizeof(client_addr);
int client_fd = accept4(server_fd_,
reinterpret_cast<sockaddr*>(&client_addr),
&client_len,
SOCK_NONBLOCK | SOCK_CLOEXEC);
if (client_fd == -1) {
if (errno == EAGAIN || errno == EWOULDBLOCK) break;
continue;
}
int opt = 1;
setsockopt(client_fd, IPPROTO_TCP, TCP_NODELAY, &opt, sizeof(opt));
if (add_client_impl(client_fd)) {
if (on_connection_) on_connection_(client_fd);
} else {
close(client_fd);
}
}
}
void handle_client_data(int client_fd) {
auto it = client_buffers_.find(client_fd);
if (it == client_buffers_.end()) {
remove_client_impl(client_fd);
return;
}
auto& client_buffer = it->second;
while (true) {
ssize_t bytes = recv(client_fd,
client_buffer.read_buffer->data() + client_buffer.bytes_read,
BufferPool::BUFFER_SIZE - client_buffer.bytes_read, 0);
if (bytes <= 0) {
if (bytes == 0 || (errno != EAGAIN && errno != EWOULDBLOCK)) {
remove_client_impl(client_fd);
}
break;
}
client_buffer.bytes_read += bytes;
if (on_data_) {
on_data_(client_fd, client_buffer.read_buffer->data(), client_buffer.bytes_read);
}
client_buffer.bytes_read = 0;
}
}
virtual bool add_client_impl(int client_fd) = 0;
virtual void remove_client_impl(int client_fd) = 0;
};
#ifdef __linux__
class EpollSocket : public SocketBase {
public:
explicit EpollSocket(uint16_t port = 8080) : SocketBase(port) {}
~EpollSocket() {
if (epoll_fd_ != -1) close(epoll_fd_);
}
bool start() override {
return create_server_socket() &&
create_epoll() &&
add_server_to_epoll();
}
void run() override {
std::array<epoll_event, MAX_EVENTS> events;
while (running_) {
int num_events = epoll_wait(epoll_fd_, events.data(), MAX_EVENTS, 1000);
if (num_events == -1) {
if (errno == EINTR) continue;
break;
}
for (int i = 0; i < num_events; ++i) {
if (events[i].data.fd == server_fd_) {
accept_connections();
} else {
handle_client_data(events[i].data.fd);
}
}
}
}
bool add_client(int client_fd) {
epoll_event event{};
event.events = EPOLLIN | EPOLLET;
event.data.fd = client_fd;
return epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, client_fd, &event) != -1 &&
add_client_buffer(client_fd);
}
void remove_client(int client_fd) {
epoll_ctl(epoll_fd_, EPOLL_CTL_DEL, client_fd, nullptr);
remove_client_common(client_fd);
}
private:
static constexpr int MAX_EVENTS = 1024;
int epoll_fd_ = -1;
bool create_epoll() {
epoll_fd_ = epoll_create1(EPOLL_CLOEXEC);
return epoll_fd_ != -1;
}
bool add_server_to_epoll() {
epoll_event event{};
event.events = EPOLLIN | EPOLLET;
event.data.fd = server_fd_;
return epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, server_fd_, &event) != -1;
}
bool add_client_impl(int client_fd) override {
return add_client(client_fd);
}
void remove_client_impl(int client_fd) override {
remove_client(client_fd);
}
};
using Socket = EpollSocket;
#else // BSD/macOS
class KqueueSocket : public SocketBase {
public:
explicit KqueueSocket(uint16_t port = 8080) : SocketBase(port) {}
~KqueueSocket() {
if (kqueue_fd_ != -1) close(kqueue_fd_);
}
bool start() override {
return create_server_socket() &&
create_kqueue() &&
add_server_to_kqueue();
}
void run() override {
std::array<struct kevent, MAX_EVENTS> events;
while (running_) {
struct timespec timeout{1, 0};
int num_events = kevent(kqueue_fd_, nullptr, 0, events.data(), MAX_EVENTS, &timeout);
if (num_events == -1) {
if (errno == EINTR) continue;
break;
}
for (int i = 0; i < num_events; ++i) {
int fd = static_cast<int>(events[i].ident);
if (fd == server_fd_) {
accept_connections();
} else {
handle_client_data(fd);
}
}
}
}
bool add_client(int client_fd) {
struct kevent event;
EV_SET(&event, client_fd, EVFILT_READ, EV_ADD | EV_ENABLE, 0, 0, nullptr);
return kevent(kqueue_fd_, &event, 1, nullptr, 0, nullptr) != -1 &&
add_client_buffer(client_fd);
}
void remove_client(int client_fd) {
struct kevent event;
EV_SET(&event, client_fd, EVFILT_READ, EV_DELETE, 0, 0, nullptr);
kevent(kqueue_fd_, &event, 1, nullptr, 0, nullptr);
remove_client_common(client_fd);
}
private:
static constexpr int MAX_EVENTS = 1024;
int kqueue_fd_ = -1;
bool create_kqueue() {
kqueue_fd_ = kqueue();
return kqueue_fd_ != -1;
}
bool add_server_to_kqueue() {
struct kevent event;
EV_SET(&event, server_fd_, EVFILT_READ, EV_ADD | EV_ENABLE, 0, 0, nullptr);
return kevent(kqueue_fd_, &event, 1, nullptr, 0, nullptr) != -1;
}
bool add_client_impl(int client_fd) override {
return add_client(client_fd);
}
void remove_client_impl(int client_fd) override {
remove_client(client_fd);
}
};
using Socket = KqueueSocket;
#endif
} // namespace sockeye

349
test.cpp Normal file
View File

@ -0,0 +1,349 @@
#include "sockeye.hpp"
#include <thread>
#include <chrono>
#include <atomic>
#include <iostream>
#include <vector>
#include <string>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <mutex>
#include <sys/resource.h>
using namespace std;
class SocketTest {
public:
void run() {
cout << "Starting socket tests...\n";
start_server();
this_thread::sleep_for(chrono::milliseconds(100));
test_basic_functionality();
test_throughput();
server_.stop();
if (server_thread_.joinable()) {
server_thread_.join();
}
print_results();
}
private:
struct MemoryInfo {
size_t rss_kb = 0;
size_t peak_rss_kb = 0;
size_t vsize_kb = 0;
};
MemoryInfo get_memory_info() {
MemoryInfo info;
struct rusage usage;
if (getrusage(RUSAGE_SELF, &usage) == 0) {
info.rss_kb = usage.ru_maxrss;
info.peak_rss_kb = usage.ru_maxrss;
#ifdef __APPLE__
// macOS reports in bytes, convert to KB
info.rss_kb /= 1024;
info.peak_rss_kb /= 1024;
#endif
}
return info;
}
sockeye::Socket server_{8080};
thread server_thread_;
atomic<int> peak_connections_{0};
atomic<int> current_connections_{0};
atomic<int> messages_received_{0};
atomic<size_t> bytes_received_{0};
chrono::steady_clock::time_point start_time_;
// Memory tracking
MemoryInfo baseline_memory_;
MemoryInfo peak_memory_;
// Synchronization for reliable testing
atomic<int> clients_connected_{0};
atomic<int> clients_finished_sending_{0};
mutex stats_mutex_;
void start_server() {
server_.on_connection([this](int fd) {
int current = ++current_connections_;
peak_connections_.store(max(peak_connections_.load(), current));
clients_connected_++;
});
server_.on_data([this](int fd, const char* data, size_t len) {
// Count messages by looking for our delimiter
for (size_t i = 0; i < len; ++i) {
if (data[i] == '\n') {
messages_received_++;
}
}
bytes_received_ += len;
});
server_.on_disconnect([this](int fd) {
current_connections_--;
});
if (!server_.start()) {
cerr << "Failed to start server\n";
exit(1);
}
server_thread_ = thread([this]() {
server_.run();
});
}
void test_basic_functionality() {
cout << "Testing basic functionality...\n";
int sock = create_client_socket();
if (sock == -1) {
cerr << "Failed to create client socket\n";
return;
}
string msg = "Hello, server!\n";
send(sock, msg.c_str(), msg.length(), 0);
this_thread::sleep_for(chrono::milliseconds(50));
close(sock);
cout << "Basic test completed\n";
}
void test_throughput() {
constexpr int num_clients = 100;
constexpr int messages_per_client = 500;
constexpr int message_size = 1024;
constexpr int expected_messages = num_clients * messages_per_client;
cout << "Testing throughput: " << expected_messages << " messages...\n";
// Capture baseline memory
baseline_memory_ = get_memory_info();
peak_memory_ = baseline_memory_;
// Reset counters
messages_received_ = 0;
bytes_received_ = 0;
clients_connected_ = 0;
clients_finished_sending_ = 0;
start_time_ = chrono::steady_clock::now();
vector<thread> clients;
clients.reserve(num_clients);
// Start memory monitoring thread
atomic<bool> monitoring{true};
thread memory_monitor([this, &monitoring]() {
while (monitoring) {
auto current = get_memory_info();
if (current.rss_kb > peak_memory_.rss_kb) {
peak_memory_ = current;
}
this_thread::sleep_for(chrono::milliseconds(10));
}
});
for (int i = 0; i < num_clients; ++i) {
clients.emplace_back([this, i, messages_per_client, message_size]() {
reliable_client_worker(i, messages_per_client, message_size);
});
}
// Wait for all clients to connect
while (clients_connected_.load() < num_clients) {
this_thread::sleep_for(chrono::milliseconds(10));
}
cout << "All clients connected\n";
// Wait for all clients to finish
for (auto& t : clients) {
t.join();
}
cout << "All clients finished sending\n";
// Wait for server to process all data with timeout
auto deadline = chrono::steady_clock::now() + chrono::seconds(5);
auto last_count = messages_received_.load();
int stable_iterations = 0;
while (chrono::steady_clock::now() < deadline) {
this_thread::sleep_for(chrono::milliseconds(50));
auto current_count = messages_received_.load();
if (current_count == last_count) {
stable_iterations++;
if (stable_iterations >= 5) break; // 250ms of stability
} else {
stable_iterations = 0;
last_count = current_count;
}
}
monitoring = false;
memory_monitor.join();
cout << "Expected: " << expected_messages << ", Received: " << messages_received_.load() << "\n";
}
void reliable_client_worker(int client_id, int message_count, int message_size) {
int sock = -1;
int retry_count = 0;
constexpr int max_retries = 10;
// Retry connection with exponential backoff
while (sock == -1 && retry_count < max_retries) {
sock = create_client_socket();
if (sock == -1) {
retry_count++;
this_thread::sleep_for(chrono::milliseconds(10 << retry_count));
}
}
if (sock == -1) {
cout << "Client " << client_id << " failed to connect\n";
return;
}
// Create message with delimiter
string base_msg(message_size - 1, 'A' + (client_id % 26));
string msg = base_msg + "\n"; // Add delimiter
int sent_count = 0;
// Send messages with proper flow control
for (int i = 0; i < message_count; ++i) {
int attempts = 0;
bool sent = false;
while (!sent && attempts < 5) {
ssize_t result = send(sock, msg.c_str(), msg.length(), MSG_NOSIGNAL);
if (result == static_cast<ssize_t>(msg.length())) {
sent = true;
sent_count++;
} else if (result == -1) {
if (errno == EAGAIN || errno == EWOULDBLOCK) {
// Socket buffer full, wait longer
this_thread::sleep_for(chrono::milliseconds(1 << attempts));
attempts++;
} else {
// Connection error
break;
}
} else if (result > 0) {
// Partial send - handle remaining data
size_t remaining = msg.length() - result;
const char* remaining_data = msg.c_str() + result;
while (remaining > 0) {
ssize_t more = send(sock, remaining_data, remaining, MSG_NOSIGNAL);
if (more <= 0) break;
remaining -= more;
remaining_data += more;
}
if (remaining == 0) {
sent = true;
sent_count++;
}
}
}
if (!sent) break;
// Flow control: small delay every batch
if ((i + 1) % 100 == 0) {
this_thread::sleep_for(chrono::microseconds(500));
}
}
// Ensure all data is sent before closing
shutdown(sock, SHUT_WR);
// Give server time to process
this_thread::sleep_for(chrono::milliseconds(50));
close(sock);
clients_finished_sending_++;
if (sent_count != message_count) {
cout << "Client " << client_id << " sent " << sent_count << "/" << message_count << " messages\n";
}
}
int create_client_socket() {
int sock = socket(AF_INET, SOCK_STREAM, 0);
if (sock == -1) return -1;
// Optimize socket
int opt = 1;
setsockopt(sock, IPPROTO_TCP, TCP_NODELAY, &opt, sizeof(opt));
// Larger send buffer
int buf_size = 1048576; // 1MB
setsockopt(sock, SOL_SOCKET, SO_SNDBUF, &buf_size, sizeof(buf_size));
// Set send timeout
struct timeval timeout;
timeout.tv_sec = 5;
timeout.tv_usec = 0;
setsockopt(sock, SOL_SOCKET, SO_SNDTIMEO, &timeout, sizeof(timeout));
sockaddr_in addr{};
addr.sin_family = AF_INET;
addr.sin_port = htons(8080);
inet_pton(AF_INET, "127.0.0.1", &addr.sin_addr);
if (connect(sock, reinterpret_cast<sockaddr*>(&addr), sizeof(addr)) == -1) {
close(sock);
return -1;
}
return sock;
}
void print_results() {
auto end_time = chrono::steady_clock::now();
auto duration = chrono::duration_cast<chrono::milliseconds>(end_time - start_time_);
double throughput_mps = static_cast<double>(messages_received_) / duration.count() * 1000;
double throughput_mbps = static_cast<double>(bytes_received_) / (1024 * 1024) / duration.count() * 1000;
cout << "\n=== Test Results ===\n";
cout << "Duration: " << duration.count() << "ms\n";
cout << "Messages received: " << messages_received_.load() << "\n";
cout << "Bytes received: " << bytes_received_.load() << "\n";
cout << "Throughput: " << static_cast<int>(throughput_mps) << " msg/sec\n";
cout << "Throughput: " << throughput_mbps << " MB/sec\n";
cout << "Peak connections: " << peak_connections_.load() << "\n";
cout << "\n=== Memory Usage ===\n";
cout << "Baseline RSS: " << baseline_memory_.rss_kb << " KB\n";
cout << "Peak RSS: " << peak_memory_.rss_kb << " KB\n";
cout << "Memory increase: " << (peak_memory_.rss_kb - baseline_memory_.rss_kb) << " KB\n";
if (peak_memory_.vsize_kb > 0) {
cout << "Virtual memory: " << peak_memory_.vsize_kb << " KB\n";
}
cout << "Memory per connection: " << (peak_memory_.rss_kb - baseline_memory_.rss_kb) / peak_connections_.load() << " KB\n";
}
};
int main() {
SocketTest test;
test.run();
return 0;
}