Mako/parser/parser.go
2025-06-10 11:12:46 -05:00

872 lines
19 KiB
Go

package parser
import (
"fmt"
"strconv"
"strings"
)
// ParseError represents a parsing error with location information
type ParseError struct {
Message string
Line int
Column int
Token Token
}
func (pe ParseError) Error() string {
return fmt.Sprintf("Parse error at line %d, column %d: %s (near '%s')",
pe.Line, pe.Column, pe.Message, pe.Token.Literal)
}
// Parser implements a recursive descent Pratt parser
type Parser struct {
lexer *Lexer
curToken Token
peekToken Token
prefixParseFns map[TokenType]func() Expression
infixParseFns map[TokenType]func(Expression) Expression
errors []ParseError
}
// NewParser creates a new parser instance
func NewParser(lexer *Lexer) *Parser {
p := &Parser{
lexer: lexer,
errors: []ParseError{},
}
p.prefixParseFns = make(map[TokenType]func() Expression)
p.registerPrefix(IDENT, p.parseIdentifier)
p.registerPrefix(NUMBER, p.parseNumberLiteral)
p.registerPrefix(STRING, p.parseStringLiteral)
p.registerPrefix(TRUE, p.parseBooleanLiteral)
p.registerPrefix(FALSE, p.parseBooleanLiteral)
p.registerPrefix(NIL, p.parseNilLiteral)
p.registerPrefix(LPAREN, p.parseGroupedExpression)
p.registerPrefix(LBRACE, p.parseTableLiteral)
p.registerPrefix(MINUS, p.parsePrefixExpression)
p.infixParseFns = make(map[TokenType]func(Expression) Expression)
p.registerInfix(PLUS, p.parseInfixExpression)
p.registerInfix(MINUS, p.parseInfixExpression)
p.registerInfix(SLASH, p.parseInfixExpression)
p.registerInfix(STAR, p.parseInfixExpression)
p.registerInfix(EQ, p.parseInfixExpression)
p.registerInfix(NOT_EQ, p.parseInfixExpression)
p.registerInfix(LT, p.parseInfixExpression)
p.registerInfix(GT, p.parseInfixExpression)
p.registerInfix(LT_EQ, p.parseInfixExpression)
p.registerInfix(GT_EQ, p.parseInfixExpression)
p.registerInfix(DOT, p.parseDotExpression)
p.registerInfix(LBRACKET, p.parseIndexExpression)
// Read two tokens, so curToken and peekToken are both set
p.nextToken()
p.nextToken()
return p
}
// registerPrefix registers a prefix parse function
func (p *Parser) registerPrefix(tokenType TokenType, fn func() Expression) {
p.prefixParseFns[tokenType] = fn
}
// registerInfix registers an infix parse function
func (p *Parser) registerInfix(tokenType TokenType, fn func(Expression) Expression) {
p.infixParseFns[tokenType] = fn
}
// nextToken advances to the next token
func (p *Parser) nextToken() {
p.curToken = p.peekToken
p.peekToken = p.lexer.NextToken()
}
// ParseProgram parses the entire program
func (p *Parser) ParseProgram() *Program {
program := &Program{}
program.Statements = []Statement{}
for !p.curTokenIs(EOF) {
stmt := p.parseStatement()
if stmt != nil {
program.Statements = append(program.Statements, stmt)
}
p.nextToken()
}
return program
}
// parseStatement parses a statement
func (p *Parser) parseStatement() Statement {
switch p.curToken.Type {
case IDENT:
// Try to parse as assignment (handles both simple and member access)
return p.parseAssignStatement()
case IF:
return p.parseIfStatement()
case FOR:
return p.parseForStatement()
case ECHO:
return p.parseEchoStatement()
case ASSIGN:
p.addError("assignment operator '=' without left-hand side identifier")
return nil
case ILLEGAL:
p.addError(fmt.Sprintf("unexpected token '%s'", p.curToken.Literal))
return nil
case EOF:
return nil
default:
p.addError(fmt.Sprintf("unexpected token '%s', expected statement", p.curToken.Literal))
return nil
}
}
// parseAssignStatement parses variable assignment
func (p *Parser) parseAssignStatement() *AssignStatement {
stmt := &AssignStatement{}
// Parse left-hand side expression (can be identifier or member access)
stmt.Name = p.ParseExpression(LOWEST)
if stmt.Name == nil {
p.addError("expected expression for assignment left-hand side")
return nil
}
// Check if next token is assignment operator
if !p.peekTokenIs(ASSIGN) {
p.addError("unexpected identifier, expected assignment or declaration")
return nil
}
// Validate assignment target
switch stmt.Name.(type) {
case *Identifier, *DotExpression, *IndexExpression:
// Valid assignment targets
default:
p.addError("invalid assignment target")
return nil
}
if !p.expectPeek(ASSIGN) {
return nil
}
p.nextToken()
stmt.Value = p.ParseExpression(LOWEST)
if stmt.Value == nil {
p.addError("expected expression after assignment operator")
return nil
}
return stmt
}
// parseEchoStatement parses echo statements
func (p *Parser) parseEchoStatement() *EchoStatement {
stmt := &EchoStatement{}
p.nextToken() // move past 'echo'
stmt.Value = p.ParseExpression(LOWEST)
if stmt.Value == nil {
p.addError("expected expression after 'echo'")
return nil
}
return stmt
}
// parseForStatement parses for loops (both numeric and for-in)
func (p *Parser) parseForStatement() Statement {
p.nextToken() // move past 'for'
if !p.curTokenIs(IDENT) {
p.addError("expected identifier after 'for'")
return nil
}
firstVar := &Identifier{Value: p.curToken.Literal}
// Look ahead to determine which type of for loop
if p.peekTokenIs(ASSIGN) {
// Numeric for loop: for i = start, end, step do
return p.parseNumericForStatement(firstVar)
} else if p.peekTokenIs(COMMA) || p.peekTokenIs(IN) {
// For-in loop: for k, v in expr do or for v in expr do
return p.parseForInStatement(firstVar)
} else {
p.addError("expected '=', ',' or 'in' after for loop variable")
return nil
}
}
// parseNumericForStatement parses numeric for loops: for i = start, end, step do
func (p *Parser) parseNumericForStatement(variable *Identifier) *ForStatement {
stmt := &ForStatement{Variable: variable}
if !p.expectPeek(ASSIGN) {
return nil
}
p.nextToken() // move past '='
// Parse start expression
stmt.Start = p.ParseExpression(LOWEST)
if stmt.Start == nil {
p.addError("expected start expression in for loop")
return nil
}
if !p.expectPeek(COMMA) {
p.addError("expected ',' after start expression in for loop")
return nil
}
p.nextToken() // move past ','
// Parse end expression
stmt.End = p.ParseExpression(LOWEST)
if stmt.End == nil {
p.addError("expected end expression in for loop")
return nil
}
// Optional step expression
if p.peekTokenIs(COMMA) {
p.nextToken() // move to ','
p.nextToken() // move past ','
stmt.Step = p.ParseExpression(LOWEST)
if stmt.Step == nil {
p.addError("expected step expression in for loop")
return nil
}
}
if !p.expectPeek(DO) {
p.addError("expected 'do' after for loop header")
return nil
}
p.nextToken() // move past 'do'
// Parse loop body
stmt.Body = p.parseBlockStatements(END)
if !p.curTokenIs(END) {
p.addError("expected 'end' to close for loop")
return nil
}
return stmt
}
// parseForInStatement parses for-in loops: for k, v in expr do or for v in expr do
func (p *Parser) parseForInStatement(firstVar *Identifier) *ForInStatement {
stmt := &ForInStatement{}
if p.peekTokenIs(COMMA) {
// Two variables: for k, v in expr do
stmt.Key = firstVar
p.nextToken() // move to ','
p.nextToken() // move past ','
if !p.curTokenIs(IDENT) {
p.addError("expected identifier after ',' in for loop")
return nil
}
stmt.Value = &Identifier{Value: p.curToken.Literal}
} else {
// Single variable: for v in expr do
stmt.Value = firstVar
}
if !p.expectPeek(IN) {
p.addError("expected 'in' in for loop")
return nil
}
p.nextToken() // move past 'in'
// Parse iterable expression
stmt.Iterable = p.ParseExpression(LOWEST)
if stmt.Iterable == nil {
p.addError("expected expression after 'in' in for loop")
return nil
}
if !p.expectPeek(DO) {
p.addError("expected 'do' after for loop header")
return nil
}
p.nextToken() // move past 'do'
// Parse loop body
stmt.Body = p.parseBlockStatements(END)
if !p.curTokenIs(END) {
p.addError("expected 'end' to close for loop")
return nil
}
return stmt
}
// parseIfStatement parses if/elseif/else/end statements
func (p *Parser) parseIfStatement() *IfStatement {
stmt := &IfStatement{}
p.nextToken() // move past 'if'
stmt.Condition = p.ParseExpression(LOWEST)
if stmt.Condition == nil {
p.addError("expected condition after 'if'")
return nil
}
// Optional 'then' keyword
if p.peekTokenIs(THEN) {
p.nextToken()
}
p.nextToken() // move past condition (and optional 'then')
// Check if we immediately hit END (missing body)
if p.curTokenIs(END) {
p.addError("expected 'end' to close if statement")
return nil
}
// Parse if body
stmt.Body = p.parseBlockStatements(ELSEIF, ELSE, END)
// Parse elseif clauses
for p.curTokenIs(ELSEIF) {
elseif := ElseIfClause{}
p.nextToken() // move past 'elseif'
elseif.Condition = p.ParseExpression(LOWEST)
if elseif.Condition == nil {
p.addError("expected condition after 'elseif'")
return nil
}
// Optional 'then' keyword
if p.peekTokenIs(THEN) {
p.nextToken()
}
p.nextToken() // move past condition (and optional 'then')
elseif.Body = p.parseBlockStatements(ELSEIF, ELSE, END)
stmt.ElseIfs = append(stmt.ElseIfs, elseif)
}
// Parse else clause
if p.curTokenIs(ELSE) {
p.nextToken() // move past 'else'
stmt.Else = p.parseBlockStatements(END)
}
if !p.curTokenIs(END) {
p.addError("expected 'end' to close if statement")
return nil
}
return stmt
}
// parseBlockStatements parses statements until one of the terminator tokens
func (p *Parser) parseBlockStatements(terminators ...TokenType) []Statement {
statements := []Statement{}
for !p.curTokenIs(EOF) && !p.isTerminator(terminators...) {
stmt := p.parseStatement()
if stmt != nil {
statements = append(statements, stmt)
}
p.nextToken()
}
return statements
}
// isTerminator checks if current token is one of the terminators
func (p *Parser) isTerminator(terminators ...TokenType) bool {
for _, terminator := range terminators {
if p.curTokenIs(terminator) {
return true
}
}
return false
}
// ParseExpression parses expressions using Pratt parsing
func (p *Parser) ParseExpression(precedence Precedence) Expression {
prefix := p.prefixParseFns[p.curToken.Type]
if prefix == nil {
p.noPrefixParseFnError(p.curToken.Type)
return nil
}
leftExp := prefix()
if leftExp == nil {
return nil
}
for !p.peekTokenIs(EOF) && precedence < p.peekPrecedence() {
infix := p.infixParseFns[p.peekToken.Type]
if infix == nil {
return leftExp
}
p.nextToken()
leftExp = infix(leftExp)
if leftExp == nil {
return nil
}
}
return leftExp
}
// Expression parsing functions
func (p *Parser) parseIdentifier() Expression {
return &Identifier{Value: p.curToken.Literal}
}
func (p *Parser) parseNumberLiteral() Expression {
lit := &NumberLiteral{}
literal := p.curToken.Literal
var value float64
var err error
// Check for hexadecimal (0x/0X prefix)
if strings.HasPrefix(literal, "0x") || strings.HasPrefix(literal, "0X") {
// Validate hex format
if len(literal) <= 2 {
p.addError(fmt.Sprintf("could not parse '%s' as hexadecimal number", literal))
return nil
}
hexPart := literal[2:]
for _, ch := range hexPart {
if !((ch >= '0' && ch <= '9') || (ch >= 'a' && ch <= 'f') || (ch >= 'A' && ch <= 'F')) {
p.addError(fmt.Sprintf("could not parse '%s' as hexadecimal number", literal))
return nil
}
}
// Parse as hex and convert to float64
intVal, parseErr := strconv.ParseInt(literal, 0, 64)
if parseErr != nil {
p.addError(fmt.Sprintf("could not parse '%s' as hexadecimal number", literal))
return nil
}
value = float64(intVal)
} else if strings.HasPrefix(literal, "0b") || strings.HasPrefix(literal, "0B") {
// Validate binary format
if len(literal) <= 2 {
p.addError(fmt.Sprintf("could not parse '%s' as binary number", literal))
return nil
}
binaryPart := literal[2:]
for _, ch := range binaryPart {
if ch != '0' && ch != '1' {
p.addError(fmt.Sprintf("could not parse '%s' as binary number", literal))
return nil
}
}
// Parse binary manually since Go doesn't support 0b in ParseInt with base 0
binaryStr := literal[2:] // remove "0b" prefix
intVal, parseErr := strconv.ParseInt(binaryStr, 2, 64)
if parseErr != nil {
p.addError(fmt.Sprintf("could not parse '%s' as binary number", literal))
return nil
}
value = float64(intVal)
} else {
// Parse as regular decimal (handles scientific notation automatically)
value, err = strconv.ParseFloat(literal, 64)
if err != nil {
p.addError(fmt.Sprintf("could not parse '%s' as number", literal))
return nil
}
}
lit.Value = value
return lit
}
func (p *Parser) parseStringLiteral() Expression {
return &StringLiteral{Value: p.curToken.Literal}
}
func (p *Parser) parseBooleanLiteral() Expression {
return &BooleanLiteral{Value: p.curTokenIs(TRUE)}
}
func (p *Parser) parseNilLiteral() Expression {
return &NilLiteral{}
}
func (p *Parser) parsePrefixExpression() Expression {
expression := &PrefixExpression{
Operator: p.curToken.Literal,
}
p.nextToken()
expression.Right = p.ParseExpression(PREFIX)
if expression.Right == nil {
p.addError(fmt.Sprintf("expected expression after prefix operator '%s'", expression.Operator))
return nil
}
return expression
}
func (p *Parser) parseGroupedExpression() Expression {
p.nextToken()
exp := p.ParseExpression(LOWEST)
if exp == nil {
return nil
}
if !p.expectPeek(RPAREN) {
return nil
}
return exp
}
func (p *Parser) parseTableLiteral() Expression {
table := &TableLiteral{}
table.Pairs = []TablePair{}
if p.peekTokenIs(RBRACE) {
p.nextToken()
return table
}
p.nextToken()
for {
// Check for EOF
if p.curTokenIs(EOF) {
p.addError("unexpected end of input, expected }")
return nil
}
pair := TablePair{}
// Check if this is a key=value pair (identifier or string key)
if (p.curTokenIs(IDENT) || p.curTokenIs(STRING)) && p.peekTokenIs(ASSIGN) {
if p.curTokenIs(IDENT) {
pair.Key = &Identifier{Value: p.curToken.Literal}
} else {
pair.Key = &StringLiteral{Value: p.curToken.Literal}
}
p.nextToken() // move to =
p.nextToken() // move past =
// Check for EOF after =
if p.curTokenIs(EOF) {
p.addError("expected expression after assignment operator")
return nil
}
pair.Value = p.ParseExpression(LOWEST)
} else {
// Array-style element
pair.Value = p.ParseExpression(LOWEST)
}
if pair.Value == nil {
return nil
}
table.Pairs = append(table.Pairs, pair)
if !p.peekTokenIs(COMMA) {
break
}
p.nextToken() // consume comma
p.nextToken() // move to next element
// Allow trailing comma
if p.curTokenIs(RBRACE) {
break
}
// Check for EOF after comma
if p.curTokenIs(EOF) {
p.addError("expected next token to be }")
return nil
}
}
if !p.expectPeek(RBRACE) {
return nil
}
return table
}
func (p *Parser) parseInfixExpression(left Expression) Expression {
expression := &InfixExpression{
Left: left,
Operator: p.curToken.Literal,
}
precedence := p.curPrecedence()
p.nextToken()
expression.Right = p.ParseExpression(precedence)
if expression.Right == nil {
p.addError(fmt.Sprintf("expected expression after operator '%s'", expression.Operator))
return nil
}
return expression
}
func (p *Parser) parseDotExpression(left Expression) Expression {
if !p.expectPeekIdent() {
p.addError("expected identifier after '.'")
return nil
}
return &DotExpression{
Left: left,
Key: p.curToken.Literal,
}
}
func (p *Parser) parseIndexExpression(left Expression) Expression {
p.nextToken() // move past '['
index := p.ParseExpression(LOWEST)
if index == nil {
p.addError("expected expression inside brackets")
return nil
}
if !p.expectPeek(RBRACKET) {
p.addError("expected ']' after index expression")
return nil
}
return &IndexExpression{
Left: left,
Index: index,
}
}
// Helper methods
func (p *Parser) curTokenIs(t TokenType) bool {
return p.curToken.Type == t
}
func (p *Parser) peekTokenIs(t TokenType) bool {
return p.peekToken.Type == t
}
func (p *Parser) expectPeek(t TokenType) bool {
if p.peekTokenIs(t) {
p.nextToken()
return true
}
p.peekError(t)
return false
}
// expectPeekIdent accepts IDENT or keyword tokens as identifiers
func (p *Parser) expectPeekIdent() bool {
if p.peekTokenIs(IDENT) || p.isKeyword(p.peekToken.Type) {
p.nextToken()
return true
}
p.peekError(IDENT)
return false
}
// isKeyword checks if a token type is a keyword that can be used as identifier
func (p *Parser) isKeyword(t TokenType) bool {
switch t {
case TRUE, FALSE, NIL, VAR, IF, THEN, ELSEIF, ELSE, END, ECHO, FOR, IN, DO:
return true
default:
return false
}
}
// Error handling methods
func (p *Parser) addError(message string) {
p.errors = append(p.errors, ParseError{
Message: message,
Line: p.curToken.Line,
Column: p.curToken.Column,
Token: p.curToken,
})
}
func (p *Parser) peekError(t TokenType) {
message := fmt.Sprintf("expected next token to be %s, got %s instead",
tokenTypeString(t), tokenTypeString(p.peekToken.Type))
p.errors = append(p.errors, ParseError{
Message: message,
Line: p.peekToken.Line,
Column: p.peekToken.Column,
Token: p.peekToken,
})
}
func (p *Parser) noPrefixParseFnError(t TokenType) {
var message string
switch t {
case ASSIGN:
message = "unexpected assignment operator, missing left-hand side identifier"
case PLUS, MINUS, STAR, SLASH:
message = fmt.Sprintf("unexpected operator '%s', missing left operand", tokenTypeString(t))
case RPAREN:
message = "unexpected closing parenthesis"
case RBRACE:
message = "unexpected closing brace"
case RBRACKET:
message = "unexpected closing bracket"
case EOF:
message = "unexpected end of input"
default:
message = fmt.Sprintf("unexpected token '%s'", tokenTypeString(t))
}
p.addError(message)
}
func (p *Parser) peekPrecedence() Precedence {
if p, ok := precedences[p.peekToken.Type]; ok {
return p
}
return LOWEST
}
func (p *Parser) curPrecedence() Precedence {
if p, ok := precedences[p.curToken.Type]; ok {
return p
}
return LOWEST
}
// Errors returns all parsing errors
func (p *Parser) Errors() []ParseError {
return p.errors
}
// HasErrors returns true if there are any parsing errors
func (p *Parser) HasErrors() bool {
return len(p.errors) > 0
}
// ErrorStrings returns error messages as strings for backward compatibility
func (p *Parser) ErrorStrings() []string {
result := make([]string, len(p.errors))
for i, err := range p.errors {
result[i] = err.Error()
}
return result
}
// tokenTypeString returns a human-readable string for token types
func tokenTypeString(t TokenType) string {
switch t {
case IDENT:
return "identifier"
case NUMBER:
return "number"
case STRING:
return "string"
case TRUE, FALSE:
return "boolean"
case NIL:
return "nil"
case ASSIGN:
return "="
case PLUS:
return "+"
case MINUS:
return "-"
case STAR:
return "*"
case SLASH:
return "/"
case DOT:
return "."
case EQ:
return "=="
case NOT_EQ:
return "!="
case LT:
return "<"
case GT:
return ">"
case LT_EQ:
return "<="
case GT_EQ:
return ">="
case LPAREN:
return "("
case RPAREN:
return ")"
case LBRACE:
return "{"
case RBRACE:
return "}"
case LBRACKET:
return "["
case RBRACKET:
return "]"
case COMMA:
return ","
case VAR:
return "var"
case IF:
return "if"
case THEN:
return "then"
case ELSEIF:
return "elseif"
case ELSE:
return "else"
case END:
return "end"
case ECHO:
return "echo"
case FOR:
return "for"
case IN:
return "in"
case DO:
return "do"
case EOF:
return "end of file"
case ILLEGAL:
return "illegal token"
default:
return "unknown"
}
}