basic compiler 1

This commit is contained in:
Sky Johnson 2025-06-11 17:43:17 -05:00
parent 53cdb95b6e
commit 07edd82c8b
3 changed files with 1152 additions and 250 deletions

View File

@ -1,290 +1,538 @@
package compiler
import "fmt"
import (
"fmt"
// Constants for compiler limits
const (
MaxLocals = 256 // Maximum local variables per function
MaxUpvalues = 256 // Maximum upvalues per function
MaxConstants = 65536 // Maximum constants per chunk
"git.sharkk.net/Sharkk/Mako/parser"
)
// CompilerState holds state during compilation
type CompilerState struct {
Chunk *Chunk // Current chunk being compiled
Constants map[string]int // Constant pool index mapping
Functions []Function // Compiled functions
Structs []Struct // Compiled structs
Locals []Local // Local variable stack
Upvalues []UpvalueRef // Upvalue definitions
ScopeDepth int // Current scope nesting level
FunctionType FunctionType // Type of function being compiled
BreakJumps []int // Break jump addresses for loops
ContinueJumps []int // Continue jump addresses for loops
LoopStart int // Start of current loop for continue
LoopDepth int // Current loop nesting depth
// Compiler holds the compilation state and compiles AST to bytecode
type Compiler struct {
current *CompilerState // Current compilation state
enclosing *CompilerState // Enclosing function state for closures
errors []CompileError // Compilation errors
}
// Local represents a local variable during compilation
type Local struct {
Name string // Variable name
Depth int // Scope depth where declared
IsCaptured bool // Whether variable is captured by closure
Slot int // Stack slot index
}
// UpvalueRef represents an upvalue reference during compilation
type UpvalueRef struct {
Index uint8 // Index in enclosing function's locals or upvalues
IsLocal bool // True if captures local, false if captures upvalue
}
// FunctionType represents the type of function being compiled
type FunctionType uint8
const (
FunctionTypeScript FunctionType = iota // Top-level script
FunctionTypeFunction // Regular function
FunctionTypeMethod // Struct method
)
// CompileError represents a compilation error with location information
type CompileError struct {
Message string
Line int
Column int
}
func (ce CompileError) Error() string {
return fmt.Sprintf("Compile error at line %d, column %d: %s", ce.Line, ce.Column, ce.Message)
}
// NewCompilerState creates a new compiler state for compilation
func NewCompilerState(functionType FunctionType) *CompilerState {
return &CompilerState{
Chunk: NewChunk(),
Constants: make(map[string]int),
Functions: make([]Function, 0),
Structs: make([]Struct, 0),
Locals: make([]Local, 0, MaxLocals),
Upvalues: make([]UpvalueRef, 0, MaxUpvalues),
ScopeDepth: 0,
FunctionType: functionType,
BreakJumps: make([]int, 0),
ContinueJumps: make([]int, 0),
LoopStart: -1,
LoopDepth: 0,
// NewCompiler creates a new compiler instance
func NewCompiler() *Compiler {
return &Compiler{
current: NewCompilerState(FunctionTypeScript),
errors: make([]CompileError, 0),
}
}
// NewChunk creates a new bytecode chunk
func NewChunk() *Chunk {
return &Chunk{
Code: make([]uint8, 0, 256),
Constants: make([]Value, 0, 64),
Lines: make([]int, 0, 256),
Functions: make([]Function, 0),
Structs: make([]Struct, 0),
// Compile compiles a program AST to bytecode
func (c *Compiler) Compile(program *parser.Program) (*Chunk, []CompileError) {
for _, stmt := range program.Statements {
c.compileStatement(stmt)
}
c.current.EmitInstruction(OpReturnNil)
if len(c.errors) > 0 {
return nil, c.errors
}
return c.current.Chunk, nil
}
// Scope management methods
func (cs *CompilerState) BeginScope() {
cs.ScopeDepth++
}
func (cs *CompilerState) EndScope() {
cs.ScopeDepth--
// Remove locals that go out of scope
for len(cs.Locals) > 0 && cs.Locals[len(cs.Locals)-1].Depth > cs.ScopeDepth {
local := cs.Locals[len(cs.Locals)-1]
if local.IsCaptured {
// Emit close upvalue instruction
cs.EmitByte(uint8(OpCloseUpvalue))
} else {
// Emit pop instruction
cs.EmitByte(uint8(OpPop))
}
cs.Locals = cs.Locals[:len(cs.Locals)-1]
}
}
// Local variable management
func (cs *CompilerState) AddLocal(name string) error {
if len(cs.Locals) >= MaxLocals {
return CompileError{
Message: "too many local variables in function",
}
}
local := Local{
Name: name,
Depth: -1, // Mark as uninitialized
IsCaptured: false,
Slot: len(cs.Locals),
}
cs.Locals = append(cs.Locals, local)
return nil
}
func (cs *CompilerState) MarkInitialized() {
if len(cs.Locals) > 0 {
cs.Locals[len(cs.Locals)-1].Depth = cs.ScopeDepth
}
}
func (cs *CompilerState) ResolveLocal(name string) int {
for i := len(cs.Locals) - 1; i >= 0; i-- {
local := &cs.Locals[i]
if local.Name == name {
if local.Depth == -1 {
// Variable used before initialization
return -2
}
return i
}
}
return -1
}
// Upvalue management
func (cs *CompilerState) AddUpvalue(index uint8, isLocal bool) int {
upvalueCount := len(cs.Upvalues)
// Check if upvalue already exists
for i := range upvalueCount {
upvalue := &cs.Upvalues[i]
if upvalue.Index == index && upvalue.IsLocal == isLocal {
return i
}
}
if upvalueCount >= MaxUpvalues {
return -1 // Too many upvalues
}
cs.Upvalues = append(cs.Upvalues, UpvalueRef{
Index: index,
IsLocal: isLocal,
})
return upvalueCount
}
// Constant pool management
func (cs *CompilerState) AddConstant(value Value) int {
// Check if constant already exists to avoid duplicates
key := cs.valueKey(value)
if index, exists := cs.Constants[key]; exists {
return index
}
if len(cs.Chunk.Constants) >= MaxConstants {
return -1 // Too many constants
}
index := len(cs.Chunk.Constants)
cs.Chunk.Constants = append(cs.Chunk.Constants, value)
cs.Constants[key] = index
return index
}
// Generate unique key for value in constant pool
func (cs *CompilerState) valueKey(value Value) string {
switch value.Type {
case ValueNil:
return "nil"
case ValueBool:
if value.Data.(bool) {
return "bool:true"
}
return "bool:false"
case ValueNumber:
return fmt.Sprintf("number:%g", value.Data.(float64))
case ValueString:
return fmt.Sprintf("string:%s", value.Data.(string))
// Statement compilation
func (c *Compiler) compileStatement(stmt parser.Statement) {
switch s := stmt.(type) {
case *parser.StructStatement:
c.compileStructStatement(s)
case *parser.MethodDefinition:
c.compileMethodDefinition(s)
case *parser.Assignment:
c.compileAssignment(s)
case *parser.ExpressionStatement:
c.compileExpression(s.Expression)
c.current.EmitInstruction(OpPop) // Discard result
case *parser.EchoStatement:
c.compileExpression(s.Value)
c.current.EmitInstruction(OpEcho)
case *parser.IfStatement:
c.compileIfStatement(s)
case *parser.WhileStatement:
c.compileWhileStatement(s)
case *parser.ForStatement:
c.compileForStatement(s)
case *parser.ForInStatement:
c.compileForInStatement(s)
case *parser.ReturnStatement:
c.compileReturnStatement(s)
case *parser.ExitStatement:
c.compileExitStatement(s)
case *parser.BreakStatement:
c.current.EmitBreak()
default:
// For complex types, use memory address as fallback
return fmt.Sprintf("%T:%p", value.Data, value.Data)
c.addError(fmt.Sprintf("unknown statement type: %T", stmt))
}
}
// Bytecode emission methods
func (cs *CompilerState) EmitByte(byte uint8) {
cs.Chunk.Code = append(cs.Chunk.Code, byte)
cs.Chunk.Lines = append(cs.Chunk.Lines, 0) // Line will be set by caller
}
func (cs *CompilerState) EmitBytes(bytes ...uint8) {
for _, b := range bytes {
cs.EmitByte(b)
// Expression compilation
func (c *Compiler) compileExpression(expr parser.Expression) {
switch e := expr.(type) {
case *parser.Identifier:
c.compileIdentifier(e)
case *parser.NumberLiteral:
c.compileNumberLiteral(e)
case *parser.StringLiteral:
c.compileStringLiteral(e)
case *parser.BooleanLiteral:
c.compileBooleanLiteral(e)
case *parser.NilLiteral:
c.compileNilLiteral(e)
case *parser.TableLiteral:
c.compileTableLiteral(e)
case *parser.StructConstructor:
c.compileStructConstructor(e)
case *parser.FunctionLiteral:
c.compileFunctionLiteral(e)
case *parser.CallExpression:
c.compileCallExpression(e)
case *parser.PrefixExpression:
c.compilePrefixExpression(e)
case *parser.InfixExpression:
c.compileInfixExpression(e)
case *parser.IndexExpression:
c.compileIndexExpression(e)
case *parser.DotExpression:
c.compileDotExpression(e)
case *parser.Assignment:
c.compileAssignmentExpression(e)
default:
c.addError(fmt.Sprintf("unknown expression type: %T", expr))
}
}
func (cs *CompilerState) EmitInstruction(op Opcode, operands ...uint16) {
bytes := EncodeInstruction(op, operands...)
cs.EmitBytes(bytes...)
// Literal compilation
func (c *Compiler) compileNumberLiteral(node *parser.NumberLiteral) {
value := Value{Type: ValueNumber, Data: node.Value}
index := c.current.AddConstant(value)
if index == -1 {
c.addError("too many constants")
return
}
c.current.EmitInstruction(OpLoadConst, uint16(index))
}
func (cs *CompilerState) EmitJump(op Opcode) int {
cs.EmitByte(uint8(op))
cs.EmitByte(0xFF) // Placeholder
cs.EmitByte(0xFF) // Placeholder
return len(cs.Chunk.Code) - 2 // Return offset of jump address
func (c *Compiler) compileStringLiteral(node *parser.StringLiteral) {
value := Value{Type: ValueString, Data: node.Value}
index := c.current.AddConstant(value)
if index == -1 {
c.addError("too many constants")
return
}
c.current.EmitInstruction(OpLoadConst, uint16(index))
}
func (cs *CompilerState) PatchJump(offset int) {
// Calculate jump distance
jump := len(cs.Chunk.Code) - offset - 2
func (c *Compiler) compileBooleanLiteral(node *parser.BooleanLiteral) {
value := Value{Type: ValueBool, Data: node.Value}
index := c.current.AddConstant(value)
if index == -1 {
c.addError("too many constants")
return
}
c.current.EmitInstruction(OpLoadConst, uint16(index))
}
if jump > 65535 {
// Jump too large - would need long jump instruction
func (c *Compiler) compileNilLiteral(node *parser.NilLiteral) {
value := Value{Type: ValueNil, Data: nil}
index := c.current.AddConstant(value)
if index == -1 {
c.addError("too many constants")
return
}
c.current.EmitInstruction(OpLoadConst, uint16(index))
}
// Identifier compilation
func (c *Compiler) compileIdentifier(node *parser.Identifier) {
// Try local variables first
slot := c.current.ResolveLocal(node.Value)
if slot != -1 {
if slot == -2 {
c.addError("can't read local variable in its own initializer")
return
}
c.current.EmitInstruction(OpLoadLocal, uint16(slot))
return
}
cs.Chunk.Code[offset] = uint8(jump & 0xFF)
cs.Chunk.Code[offset+1] = uint8((jump >> 8) & 0xFF)
}
// Loop management
func (cs *CompilerState) EnterLoop() {
cs.LoopStart = len(cs.Chunk.Code)
cs.LoopDepth++
}
func (cs *CompilerState) ExitLoop() {
cs.LoopDepth--
if cs.LoopDepth == 0 {
cs.LoopStart = -1
// Try upvalues
upvalue := c.resolveUpvalue(node.Value)
if upvalue != -1 {
c.current.EmitInstruction(OpGetUpvalue, uint16(upvalue))
return
}
// Patch break jumps
for _, jumpOffset := range cs.BreakJumps {
cs.PatchJump(jumpOffset)
// Must be global
value := Value{Type: ValueString, Data: node.Value}
index := c.current.AddConstant(value)
if index == -1 {
c.addError("too many constants")
return
}
cs.BreakJumps = cs.BreakJumps[:0]
c.current.EmitInstruction(OpLoadGlobal, uint16(index))
}
// Patch continue jumps
for _, jumpOffset := range cs.ContinueJumps {
jump := cs.LoopStart - jumpOffset - 2
if jump < 65535 {
cs.Chunk.Code[jumpOffset] = uint8(jump & 0xFF)
cs.Chunk.Code[jumpOffset+1] = uint8((jump >> 8) & 0xFF)
// Assignment compilation
func (c *Compiler) compileAssignment(node *parser.Assignment) {
c.compileExpression(node.Value)
switch target := node.Target.(type) {
case *parser.Identifier:
if node.IsDeclaration {
// Check if we're at global scope
if c.current.FunctionType == FunctionTypeScript && c.current.ScopeDepth == 0 {
// Global variable declaration - treat as global assignment
value := Value{Type: ValueString, Data: target.Value}
index := c.current.AddConstant(value)
if index == -1 {
c.addError("too many constants")
return
}
c.current.EmitInstruction(OpStoreGlobal, uint16(index))
} else {
// Local variable declaration
if err := c.current.AddLocal(target.Value); err != nil {
c.addError(err.Error())
return
}
c.current.MarkInitialized()
}
} else {
// Assignment to existing variable
slot := c.current.ResolveLocal(target.Value)
if slot != -1 {
c.current.EmitInstruction(OpStoreLocal, uint16(slot))
} else {
upvalue := c.resolveUpvalue(target.Value)
if upvalue != -1 {
c.current.EmitInstruction(OpSetUpvalue, uint16(upvalue))
} else {
// Global assignment
value := Value{Type: ValueString, Data: target.Value}
index := c.current.AddConstant(value)
if index == -1 {
c.addError("too many constants")
return
}
c.current.EmitInstruction(OpStoreGlobal, uint16(index))
}
}
}
case *parser.DotExpression:
// table.field = value
c.compileExpression(target.Left)
value := Value{Type: ValueString, Data: target.Key}
index := c.current.AddConstant(value)
if index == -1 {
c.addError("too many constants")
return
}
c.current.EmitInstruction(OpSetField, uint16(index))
case *parser.IndexExpression:
// table[key] = value
c.compileExpression(target.Left)
c.compileExpression(target.Index)
c.current.EmitInstruction(OpSetIndex)
default:
c.addError("invalid assignment target")
}
}
func (c *Compiler) compileAssignmentExpression(node *parser.Assignment) {
c.compileAssignment(node)
// Assignment expressions leave the assigned value on stack
}
// Operator compilation
func (c *Compiler) compilePrefixExpression(node *parser.PrefixExpression) {
c.compileExpression(node.Right)
switch node.Operator {
case "-":
c.current.EmitInstruction(OpNeg)
case "not":
c.current.EmitInstruction(OpNot)
default:
c.addError(fmt.Sprintf("unknown prefix operator: %s", node.Operator))
}
}
func (c *Compiler) compileInfixExpression(node *parser.InfixExpression) {
// Handle short-circuit operators specially
if node.Operator == "and" {
c.compileExpression(node.Left)
jump := c.current.EmitJump(OpJumpIfFalse)
c.current.EmitInstruction(OpPop)
c.compileExpression(node.Right)
c.current.PatchJump(jump)
return
}
if node.Operator == "or" {
c.compileExpression(node.Left)
elseJump := c.current.EmitJump(OpJumpIfFalse)
endJump := c.current.EmitJump(OpJump)
c.current.PatchJump(elseJump)
c.current.EmitInstruction(OpPop)
c.compileExpression(node.Right)
c.current.PatchJump(endJump)
return
}
// Regular binary operators
c.compileExpression(node.Left)
c.compileExpression(node.Right)
switch node.Operator {
case "+":
c.current.EmitInstruction(OpAdd)
case "-":
c.current.EmitInstruction(OpSub)
case "*":
c.current.EmitInstruction(OpMul)
case "/":
c.current.EmitInstruction(OpDiv)
case "==":
c.current.EmitInstruction(OpEq)
case "!=":
c.current.EmitInstruction(OpNeq)
case "<":
c.current.EmitInstruction(OpLt)
case "<=":
c.current.EmitInstruction(OpLte)
case ">":
c.current.EmitInstruction(OpGt)
case ">=":
c.current.EmitInstruction(OpGte)
default:
c.addError(fmt.Sprintf("unknown infix operator: %s", node.Operator))
}
}
// Control flow compilation
func (c *Compiler) compileIfStatement(node *parser.IfStatement) {
c.compileExpression(node.Condition)
// Jump over then branch if condition is false
thenJump := c.current.EmitJump(OpJumpIfFalse)
c.current.EmitInstruction(OpPop)
// Compile then branch
c.current.BeginScope()
for _, stmt := range node.Body {
c.compileStatement(stmt)
}
c.current.EndScope()
// Jump over else branches
elseJump := c.current.EmitJump(OpJump)
c.current.PatchJump(thenJump)
c.current.EmitInstruction(OpPop)
// Compile elseif branches
var elseifJumps []int
for _, elseif := range node.ElseIfs {
c.compileExpression(elseif.Condition)
nextJump := c.current.EmitJump(OpJumpIfFalse)
c.current.EmitInstruction(OpPop)
c.current.BeginScope()
for _, stmt := range elseif.Body {
c.compileStatement(stmt)
}
c.current.EndScope()
elseifJumps = append(elseifJumps, c.current.EmitJump(OpJump))
c.current.PatchJump(nextJump)
c.current.EmitInstruction(OpPop)
}
// Compile else branch
if len(node.Else) > 0 {
c.current.BeginScope()
for _, stmt := range node.Else {
c.compileStatement(stmt)
}
c.current.EndScope()
}
// Patch all jumps to end
c.current.PatchJump(elseJump)
for _, jump := range elseifJumps {
c.current.PatchJump(jump)
}
}
func (c *Compiler) compileWhileStatement(node *parser.WhileStatement) {
c.current.EnterLoop()
c.compileExpression(node.Condition)
exitJump := c.current.EmitJump(OpJumpIfFalse)
c.current.EmitInstruction(OpPop)
c.current.BeginScope()
for _, stmt := range node.Body {
c.compileStatement(stmt)
}
c.current.EndScope()
// Jump back to condition
jump := len(c.current.Chunk.Code) - c.current.LoopStart + 2
c.current.EmitInstruction(OpJump, uint16(jump))
c.current.PatchJump(exitJump)
c.current.EmitInstruction(OpPop)
c.current.ExitLoop()
}
// Table operations
func (c *Compiler) compileTableLiteral(node *parser.TableLiteral) {
c.current.EmitInstruction(OpNewTable)
for _, pair := range node.Pairs {
if pair.Key == nil {
// Array-style element
c.compileExpression(pair.Value)
c.current.EmitInstruction(OpTableInsert)
} else {
// Key-value pair
c.current.EmitInstruction(OpDup) // Duplicate table reference
c.compileExpression(pair.Key)
c.compileExpression(pair.Value)
c.current.EmitInstruction(OpSetIndex)
}
}
cs.ContinueJumps = cs.ContinueJumps[:0]
}
func (cs *CompilerState) EmitBreak() {
jumpOffset := cs.EmitJump(OpJump)
cs.BreakJumps = append(cs.BreakJumps, jumpOffset)
func (c *Compiler) compileDotExpression(node *parser.DotExpression) {
c.compileExpression(node.Left)
value := Value{Type: ValueString, Data: node.Key}
index := c.current.AddConstant(value)
if index == -1 {
c.addError("too many constants")
return
}
c.current.EmitInstruction(OpGetField, uint16(index))
}
func (cs *CompilerState) EmitContinue() {
if cs.LoopStart != -1 {
jumpOffset := cs.EmitJump(OpJump)
cs.ContinueJumps = append(cs.ContinueJumps, jumpOffset)
func (c *Compiler) compileIndexExpression(node *parser.IndexExpression) {
c.compileExpression(node.Left)
c.compileExpression(node.Index)
c.current.EmitInstruction(OpGetIndex)
}
// Function compilation
func (c *Compiler) compileCallExpression(node *parser.CallExpression) {
c.compileExpression(node.Function)
// Compile arguments
for _, arg := range node.Arguments {
c.compileExpression(arg)
}
c.current.EmitInstruction(OpCall, uint16(len(node.Arguments)))
}
func (c *Compiler) compileReturnStatement(node *parser.ReturnStatement) {
if node.Value != nil {
c.compileExpression(node.Value)
c.current.EmitInstruction(OpReturn)
} else {
c.current.EmitInstruction(OpReturnNil)
}
}
func (c *Compiler) compileExitStatement(node *parser.ExitStatement) {
if node.Value != nil {
c.compileExpression(node.Value)
} else {
// Default exit code 0
value := Value{Type: ValueNumber, Data: float64(0)}
index := c.current.AddConstant(value)
if index == -1 {
c.addError("too many constants")
return
}
c.current.EmitInstruction(OpLoadConst, uint16(index))
}
c.current.EmitInstruction(OpExit)
}
// Placeholder implementations for complex features
func (c *Compiler) compileStructStatement(node *parser.StructStatement) {
// TODO: Implement struct compilation
c.addError("struct compilation not yet implemented")
}
func (c *Compiler) compileMethodDefinition(node *parser.MethodDefinition) {
// TODO: Implement method compilation
c.addError("method compilation not yet implemented")
}
func (c *Compiler) compileStructConstructor(node *parser.StructConstructor) {
// TODO: Implement struct constructor compilation
c.addError("struct constructor compilation not yet implemented")
}
func (c *Compiler) compileFunctionLiteral(node *parser.FunctionLiteral) {
// TODO: Implement function literal compilation
c.addError("function literal compilation not yet implemented")
}
func (c *Compiler) compileForStatement(node *parser.ForStatement) {
// TODO: Implement numeric for loop compilation
c.addError("for statement compilation not yet implemented")
}
func (c *Compiler) compileForInStatement(node *parser.ForInStatement) {
// TODO: Implement for-in loop compilation
c.addError("for-in statement compilation not yet implemented")
}
// Helper methods
func (c *Compiler) resolveUpvalue(name string) int {
if c.enclosing == nil {
return -1
}
local := c.enclosing.ResolveLocal(name)
if local != -1 {
c.enclosing.Locals[local].IsCaptured = true
return c.current.AddUpvalue(uint8(local), true)
}
upvalue := c.resolveUpvalueInEnclosing(name)
if upvalue != -1 {
return c.current.AddUpvalue(uint8(upvalue), false)
}
return -1
}
func (c *Compiler) resolveUpvalueInEnclosing(name string) int {
if c.enclosing == nil {
return -1
}
// This would recursively check enclosing scopes
// Simplified for now
return -1
}
func (c *Compiler) addError(message string) {
c.errors = append(c.errors, CompileError{
Message: message,
Line: 0, // TODO: Add line tracking
Column: 0, // TODO: Add column tracking
})
}
// Error reporting
func (c *Compiler) Errors() []CompileError { return c.errors }
func (c *Compiler) HasErrors() bool { return len(c.errors) > 0 }

290
compiler/state.go Normal file
View File

@ -0,0 +1,290 @@
package compiler
import "fmt"
// Constants for compiler limits
const (
MaxLocals = 256 // Maximum local variables per function
MaxUpvalues = 256 // Maximum upvalues per function
MaxConstants = 65536 // Maximum constants per chunk
)
// CompilerState holds state during compilation
type CompilerState struct {
Chunk *Chunk // Current chunk being compiled
Constants map[string]int // Constant pool index mapping
Functions []Function // Compiled functions
Structs []Struct // Compiled structs
Locals []Local // Local variable stack
Upvalues []UpvalueRef // Upvalue definitions
ScopeDepth int // Current scope nesting level
FunctionType FunctionType // Type of function being compiled
BreakJumps []int // Break jump addresses for loops
ContinueJumps []int // Continue jump addresses for loops
LoopStart int // Start of current loop for continue
LoopDepth int // Current loop nesting depth
}
// Local represents a local variable during compilation
type Local struct {
Name string // Variable name
Depth int // Scope depth where declared
IsCaptured bool // Whether variable is captured by closure
Slot int // Stack slot index
}
// UpvalueRef represents an upvalue reference during compilation
type UpvalueRef struct {
Index uint8 // Index in enclosing function's locals or upvalues
IsLocal bool // True if captures local, false if captures upvalue
}
// FunctionType represents the type of function being compiled
type FunctionType uint8
const (
FunctionTypeScript FunctionType = iota // Top-level script
FunctionTypeFunction // Regular function
FunctionTypeMethod // Struct method
)
// CompileError represents a compilation error with location information
type CompileError struct {
Message string
Line int
Column int
}
func (ce CompileError) Error() string {
return fmt.Sprintf("Compile error at line %d, column %d: %s", ce.Line, ce.Column, ce.Message)
}
// NewCompilerState creates a new compiler state for compilation
func NewCompilerState(functionType FunctionType) *CompilerState {
return &CompilerState{
Chunk: NewChunk(),
Constants: make(map[string]int),
Functions: make([]Function, 0),
Structs: make([]Struct, 0),
Locals: make([]Local, 0, MaxLocals),
Upvalues: make([]UpvalueRef, 0, MaxUpvalues),
ScopeDepth: 0,
FunctionType: functionType,
BreakJumps: make([]int, 0),
ContinueJumps: make([]int, 0),
LoopStart: -1,
LoopDepth: 0,
}
}
// NewChunk creates a new bytecode chunk
func NewChunk() *Chunk {
return &Chunk{
Code: make([]uint8, 0, 256),
Constants: make([]Value, 0, 64),
Lines: make([]int, 0, 256),
Functions: make([]Function, 0),
Structs: make([]Struct, 0),
}
}
// Scope management methods
func (cs *CompilerState) BeginScope() {
cs.ScopeDepth++
}
func (cs *CompilerState) EndScope() {
cs.ScopeDepth--
// Remove locals that go out of scope
for len(cs.Locals) > 0 && cs.Locals[len(cs.Locals)-1].Depth > cs.ScopeDepth {
local := cs.Locals[len(cs.Locals)-1]
if local.IsCaptured {
// Emit close upvalue instruction
cs.EmitByte(uint8(OpCloseUpvalue))
} else {
// Emit pop instruction
cs.EmitByte(uint8(OpPop))
}
cs.Locals = cs.Locals[:len(cs.Locals)-1]
}
}
// Local variable management
func (cs *CompilerState) AddLocal(name string) error {
if len(cs.Locals) >= MaxLocals {
return CompileError{
Message: "too many local variables in function",
}
}
local := Local{
Name: name,
Depth: -1, // Mark as uninitialized
IsCaptured: false,
Slot: len(cs.Locals),
}
cs.Locals = append(cs.Locals, local)
return nil
}
func (cs *CompilerState) MarkInitialized() {
if len(cs.Locals) > 0 {
cs.Locals[len(cs.Locals)-1].Depth = cs.ScopeDepth
}
}
func (cs *CompilerState) ResolveLocal(name string) int {
for i := len(cs.Locals) - 1; i >= 0; i-- {
local := &cs.Locals[i]
if local.Name == name {
if local.Depth == -1 {
// Variable used before initialization
return -2
}
return i
}
}
return -1
}
// Upvalue management
func (cs *CompilerState) AddUpvalue(index uint8, isLocal bool) int {
upvalueCount := len(cs.Upvalues)
// Check if upvalue already exists
for i := range upvalueCount {
upvalue := &cs.Upvalues[i]
if upvalue.Index == index && upvalue.IsLocal == isLocal {
return i
}
}
if upvalueCount >= MaxUpvalues {
return -1 // Too many upvalues
}
cs.Upvalues = append(cs.Upvalues, UpvalueRef{
Index: index,
IsLocal: isLocal,
})
return upvalueCount
}
// Constant pool management
func (cs *CompilerState) AddConstant(value Value) int {
// Check if constant already exists to avoid duplicates
key := cs.valueKey(value)
if index, exists := cs.Constants[key]; exists {
return index
}
if len(cs.Chunk.Constants) >= MaxConstants {
return -1 // Too many constants
}
index := len(cs.Chunk.Constants)
cs.Chunk.Constants = append(cs.Chunk.Constants, value)
cs.Constants[key] = index
return index
}
// Generate unique key for value in constant pool
func (cs *CompilerState) valueKey(value Value) string {
switch value.Type {
case ValueNil:
return "nil"
case ValueBool:
if value.Data.(bool) {
return "bool:true"
}
return "bool:false"
case ValueNumber:
return fmt.Sprintf("number:%g", value.Data.(float64))
case ValueString:
return fmt.Sprintf("string:%s", value.Data.(string))
default:
// For complex types, use memory address as fallback
return fmt.Sprintf("%T:%p", value.Data, value.Data)
}
}
// Bytecode emission methods
func (cs *CompilerState) EmitByte(byte uint8) {
cs.Chunk.Code = append(cs.Chunk.Code, byte)
cs.Chunk.Lines = append(cs.Chunk.Lines, 0) // Line will be set by caller
}
func (cs *CompilerState) EmitBytes(bytes ...uint8) {
for _, b := range bytes {
cs.EmitByte(b)
}
}
func (cs *CompilerState) EmitInstruction(op Opcode, operands ...uint16) {
bytes := EncodeInstruction(op, operands...)
cs.EmitBytes(bytes...)
}
func (cs *CompilerState) EmitJump(op Opcode) int {
cs.EmitByte(uint8(op))
cs.EmitByte(0xFF) // Placeholder
cs.EmitByte(0xFF) // Placeholder
return len(cs.Chunk.Code) - 2 // Return offset of jump address
}
func (cs *CompilerState) PatchJump(offset int) {
// Calculate jump distance
jump := len(cs.Chunk.Code) - offset - 2
if jump > 65535 {
// Jump too large - would need long jump instruction
return
}
cs.Chunk.Code[offset] = uint8(jump & 0xFF)
cs.Chunk.Code[offset+1] = uint8((jump >> 8) & 0xFF)
}
// Loop management
func (cs *CompilerState) EnterLoop() {
cs.LoopStart = len(cs.Chunk.Code)
cs.LoopDepth++
}
func (cs *CompilerState) ExitLoop() {
cs.LoopDepth--
if cs.LoopDepth == 0 {
cs.LoopStart = -1
}
// Patch break jumps
for _, jumpOffset := range cs.BreakJumps {
cs.PatchJump(jumpOffset)
}
cs.BreakJumps = cs.BreakJumps[:0]
// Patch continue jumps
for _, jumpOffset := range cs.ContinueJumps {
jump := cs.LoopStart - jumpOffset - 2
if jump < 65535 {
cs.Chunk.Code[jumpOffset] = uint8(jump & 0xFF)
cs.Chunk.Code[jumpOffset+1] = uint8((jump >> 8) & 0xFF)
}
}
cs.ContinueJumps = cs.ContinueJumps[:0]
}
func (cs *CompilerState) EmitBreak() {
jumpOffset := cs.EmitJump(OpJump)
cs.BreakJumps = append(cs.BreakJumps, jumpOffset)
}
func (cs *CompilerState) EmitContinue() {
if cs.LoopStart != -1 {
jumpOffset := cs.EmitJump(OpJump)
cs.ContinueJumps = append(cs.ContinueJumps, jumpOffset)
}
}

View File

@ -0,0 +1,364 @@
package compiler_test
import (
"testing"
"git.sharkk.net/Sharkk/Mako/compiler"
"git.sharkk.net/Sharkk/Mako/parser"
)
// Helper function to compile source code and return chunk
func compileSource(t *testing.T, source string) *compiler.Chunk {
lexer := parser.NewLexer(source)
p := parser.NewParser(lexer)
program := p.ParseProgram()
if p.HasErrors() {
t.Fatalf("Parser errors: %v", p.ErrorStrings())
}
comp := compiler.NewCompiler()
chunk, errors := comp.Compile(program)
if len(errors) > 0 {
t.Fatalf("Compiler errors: %v", errors)
}
return chunk
}
// Helper to check instruction at position
func checkInstruction(t *testing.T, chunk *compiler.Chunk, pos int, expected compiler.Opcode, operands ...uint16) {
if pos >= len(chunk.Code) {
t.Fatalf("Position %d out of bounds (code length: %d)", pos, len(chunk.Code))
}
op, actualOperands, _ := compiler.DecodeInstruction(chunk.Code, pos)
if op != expected {
t.Errorf("Expected opcode %v at position %d, got %v", expected, pos, op)
}
if len(actualOperands) != len(operands) {
t.Errorf("Expected %d operands, got %d", len(operands), len(actualOperands))
return
}
for i, expected := range operands {
if actualOperands[i] != expected {
t.Errorf("Expected operand %d to be %d, got %d", i, expected, actualOperands[i])
}
}
}
// Test literal compilation
func TestNumberLiteral(t *testing.T) {
chunk := compileSource(t, "echo 42")
// Should have one constant (42) and load it
if len(chunk.Constants) != 1 {
t.Fatalf("Expected 1 constant, got %d", len(chunk.Constants))
}
if chunk.Constants[0].Type != compiler.ValueNumber {
t.Errorf("Expected number constant, got %v", chunk.Constants[0].Type)
}
if chunk.Constants[0].Data.(float64) != 42.0 {
t.Errorf("Expected constant value 42, got %v", chunk.Constants[0].Data)
}
// Check bytecode: OpLoadConst 0, OpEcho, OpReturnNil
checkInstruction(t, chunk, 0, compiler.OpLoadConst, 0)
checkInstruction(t, chunk, 3, compiler.OpEcho)
checkInstruction(t, chunk, 4, compiler.OpReturnNil)
}
func TestStringLiteral(t *testing.T) {
chunk := compileSource(t, `echo "hello"`)
if len(chunk.Constants) != 1 {
t.Fatalf("Expected 1 constant, got %d", len(chunk.Constants))
}
if chunk.Constants[0].Type != compiler.ValueString {
t.Errorf("Expected string constant, got %v", chunk.Constants[0].Type)
}
if chunk.Constants[0].Data.(string) != "hello" {
t.Errorf("Expected constant value 'hello', got %v", chunk.Constants[0].Data)
}
checkInstruction(t, chunk, 0, compiler.OpLoadConst, 0)
}
func TestBooleanLiterals(t *testing.T) {
chunk := compileSource(t, "echo true")
if chunk.Constants[0].Type != compiler.ValueBool {
t.Errorf("Expected bool constant, got %v", chunk.Constants[0].Type)
}
if chunk.Constants[0].Data.(bool) != true {
t.Errorf("Expected true, got %v", chunk.Constants[0].Data)
}
}
func TestNilLiteral(t *testing.T) {
chunk := compileSource(t, "echo nil")
if chunk.Constants[0].Type != compiler.ValueNil {
t.Errorf("Expected nil constant, got %v", chunk.Constants[0].Type)
}
}
// Test arithmetic operations
func TestArithmetic(t *testing.T) {
tests := []struct {
source string
expected compiler.Opcode
}{
{"echo 1 + 2", compiler.OpAdd},
{"echo 5 - 3", compiler.OpSub},
{"echo 4 * 6", compiler.OpMul},
{"echo 8 / 2", compiler.OpDiv},
}
for _, test := range tests {
chunk := compileSource(t, test.source)
// Should have: LoadConst 0, LoadConst 1, OpArithmetic, OpEcho, OpReturnNil
checkInstruction(t, chunk, 0, compiler.OpLoadConst, 0)
checkInstruction(t, chunk, 3, compiler.OpLoadConst, 1)
checkInstruction(t, chunk, 6, test.expected)
checkInstruction(t, chunk, 7, compiler.OpEcho)
}
}
// Test comparison operations
func TestComparison(t *testing.T) {
tests := []struct {
source string
expected compiler.Opcode
}{
{"echo 1 == 2", compiler.OpEq},
{"echo 1 != 2", compiler.OpNeq},
{"echo 1 < 2", compiler.OpLt},
{"echo 1 <= 2", compiler.OpLte},
{"echo 1 > 2", compiler.OpGt},
{"echo 1 >= 2", compiler.OpGte},
}
for _, test := range tests {
chunk := compileSource(t, test.source)
checkInstruction(t, chunk, 6, test.expected)
}
}
// Test prefix operations
func TestPrefixOperations(t *testing.T) {
tests := []struct {
source string
expected compiler.Opcode
}{
{"echo -42", compiler.OpNeg},
{"echo not true", compiler.OpNot},
}
for _, test := range tests {
chunk := compileSource(t, test.source)
checkInstruction(t, chunk, 3, test.expected)
}
}
// Test variable assignment
func TestLocalAssignment(t *testing.T) {
// Test local assignment within a function scope
chunk := compileSource(t, `
fn test()
x: number = 42
end
`)
// This tests function compilation which is not yet implemented
// For now, just check that it doesn't crash
if chunk == nil {
t.Skip("Function compilation not yet implemented")
}
}
func TestGlobalAssignment(t *testing.T) {
chunk := compileSource(t, "x = 42")
// Should have: LoadConst 0, StoreGlobal 1, OpReturnNil
// Constants: [42, "x"]
if len(chunk.Constants) != 2 {
t.Fatalf("Expected 2 constants, got %d", len(chunk.Constants))
}
// Check that we have the number and variable name
if chunk.Constants[0].Data.(float64) != 42.0 {
t.Errorf("Expected first constant to be 42, got %v", chunk.Constants[0].Data)
}
if chunk.Constants[1].Data.(string) != "x" {
t.Errorf("Expected second constant to be 'x', got %v", chunk.Constants[1].Data)
}
checkInstruction(t, chunk, 0, compiler.OpLoadConst, 0) // Load 42
checkInstruction(t, chunk, 3, compiler.OpStoreGlobal, 1) // Store to "x"
}
// Test echo statement
func TestEchoStatement(t *testing.T) {
chunk := compileSource(t, "echo 42")
// Should have: LoadConst 0, OpEcho, OpReturnNil
checkInstruction(t, chunk, 0, compiler.OpLoadConst, 0)
checkInstruction(t, chunk, 3, compiler.OpEcho)
checkInstruction(t, chunk, 4, compiler.OpReturnNil)
}
// Test if statement
func TestIfStatement(t *testing.T) {
chunk := compileSource(t, `
if true then
echo 1
end
`)
// Should start with: LoadConst, JumpIfFalse (with offset), Pop
checkInstruction(t, chunk, 0, compiler.OpLoadConst, 0) // Load true
// JumpIfFalse has 1 operand (the jump offset), but we don't need to check the exact value
op, operands, _ := compiler.DecodeInstruction(chunk.Code, 3)
if op != compiler.OpJumpIfFalse {
t.Errorf("Expected OpJumpIfFalse at position 3, got %v", op)
}
if len(operands) != 1 {
t.Errorf("Expected 1 operand for JumpIfFalse, got %d", len(operands))
}
checkInstruction(t, chunk, 6, compiler.OpPop) // Pop condition
}
// Test while loop
func TestWhileLoop(t *testing.T) {
chunk := compileSource(t, `
while true do
break
end
`)
// Should have condition evaluation and loop structure
checkInstruction(t, chunk, 0, compiler.OpLoadConst, 0) // Load true
// JumpIfFalse has 1 operand (the jump offset)
op, operands, _ := compiler.DecodeInstruction(chunk.Code, 3)
if op != compiler.OpJumpIfFalse {
t.Errorf("Expected OpJumpIfFalse at position 3, got %v", op)
}
if len(operands) != 1 {
t.Errorf("Expected 1 operand for JumpIfFalse, got %d", len(operands))
}
}
// Test table creation
func TestTableLiteral(t *testing.T) {
chunk := compileSource(t, "echo {1, 2, 3}")
// Should start with OpNewTable
checkInstruction(t, chunk, 0, compiler.OpNewTable)
}
// Test table with key-value pairs
func TestTableWithKeys(t *testing.T) {
chunk := compileSource(t, `echo {x = 1, y = 2}`)
checkInstruction(t, chunk, 0, compiler.OpNewTable)
// Should have subsequent operations to set fields
}
// Test function call
func TestFunctionCall(t *testing.T) {
chunk := compileSource(t, "print(42)")
// Should have: LoadGlobal "print", LoadConst 42, Call 1
// The exact positions depend on constant ordering
found := false
for i := 0; i < len(chunk.Code)-2; i++ {
op, operands, _ := compiler.DecodeInstruction(chunk.Code, i)
if op == compiler.OpCall && len(operands) > 0 && operands[0] == 1 {
found = true
break
}
}
if !found {
t.Error("Expected OpCall with 1 argument")
}
}
// Test constant deduplication
func TestConstantDeduplication(t *testing.T) {
chunk := compileSource(t, "echo 42\necho 42\necho 42")
// Should only have one constant despite multiple uses
if len(chunk.Constants) != 1 {
t.Errorf("Expected 1 constant (deduplicated), got %d", len(chunk.Constants))
}
}
// Test short-circuit evaluation
func TestShortCircuitAnd(t *testing.T) {
chunk := compileSource(t, "echo true and false")
// Should have conditional jumping for short-circuit
found := false
for i := 0; i < len(chunk.Code); i++ {
op, _, _ := compiler.DecodeInstruction(chunk.Code, i)
if op == compiler.OpJumpIfFalse {
found = true
break
}
}
if !found {
t.Error("Expected JumpIfFalse for short-circuit and")
}
}
func TestShortCircuitOr(t *testing.T) {
chunk := compileSource(t, "echo false or true")
// Should have conditional jumping for short-circuit
foundFalseJump := false
foundJump := false
for i := 0; i < len(chunk.Code); i++ {
op, _, _ := compiler.DecodeInstruction(chunk.Code, i)
if op == compiler.OpJumpIfFalse {
foundFalseJump = true
}
if op == compiler.OpJump {
foundJump = true
}
}
if !foundFalseJump || !foundJump {
t.Error("Expected JumpIfFalse and Jump for short-circuit or")
}
}
// Test complex expressions
func TestComplexExpression(t *testing.T) {
chunk := compileSource(t, "echo 1 + 2 * 3")
// Should follow correct precedence: Load 1, Load 2, Load 3, Mul, Add
if len(chunk.Constants) != 3 {
t.Fatalf("Expected 3 constants, got %d", len(chunk.Constants))
}
// Verify constants
expected := []float64{1, 2, 3}
for i, exp := range expected {
if chunk.Constants[i].Data.(float64) != exp {
t.Errorf("Expected constant %d to be %v, got %v", i, exp, chunk.Constants[i].Data)
}
}
}