1
0
Protocol/packets/helpers.go
2025-09-03 20:48:08 -05:00

348 lines
9.8 KiB
Go

package packets
import (
"bytes"
"compress/zlib"
"encoding/binary"
"fmt"
"io"
"git.sharkk.net/EQ2/Protocol/crypto"
"git.sharkk.net/EQ2/Protocol/opcodes"
)
// ValidateCRC validates packet CRC using EQ2's custom CRC16 (matches C++ EQProtocolPacket::ValidateCRC)
func ValidateCRC(buffer []byte, key uint32) bool {
if len(buffer) < 2 {
return false
}
// Session packets are not CRC protected
if len(buffer) >= 2 && buffer[0] == 0x00 &&
(buffer[1] == byte(opcodes.OP_SessionRequest) ||
buffer[1] == byte(opcodes.OP_SessionResponse) ||
buffer[1] == byte(opcodes.OP_OutOfSession)) {
return true
}
// Combined application packets are also exempt (OP_AppCombined = 0x0019)
if len(buffer) >= 4 && buffer[2] == 0x00 && buffer[3] == 0x19 {
return true
}
// All other packets must have valid CRC
// Extract CRC from last 2 bytes (network byte order)
packetCRC := binary.BigEndian.Uint16(buffer[len(buffer)-2:])
// Calculate CRC on data portion (excluding CRC bytes)
data := buffer[:len(buffer)-2]
calculatedCRC := crypto.CalculateCRC(data, key)
// Valid if no CRC present (packetCRC == 0) or CRCs match
return packetCRC == 0 || calculatedCRC == packetCRC
}
// AppendCRC appends CRC16 to packet buffer using EQ2's custom CRC
func AppendCRC(buffer []byte, key uint32) []byte {
crc := crypto.CalculateCRC(buffer, key)
result := make([]byte, len(buffer)+2)
copy(result, buffer)
binary.BigEndian.PutUint16(result[len(buffer):], crc)
return result
}
// StripCRC removes CRC16 from packet buffer
func StripCRC(buffer []byte) []byte {
if len(buffer) < 2 {
return buffer
}
return buffer[:len(buffer)-2]
}
// Compress compresses packet data using zlib or simple encoding (matches C++ EQProtocolPacket::Compress)
// Uses zlib for packets > 30 bytes, simple encoding for smaller packets
func Compress(src []byte) ([]byte, error) {
if len(src) == 0 {
return src, nil
}
// C++ uses 30 bytes as threshold between simple encoding and zlib
if len(src) > 30 {
// Use zlib compression for larger packets
var buf bytes.Buffer
// Write uncompressed length first (4 bytes) - EQ protocol requirement
if err := binary.Write(&buf, binary.BigEndian, uint32(len(src))); err != nil {
return nil, err
}
// Compress the data
w := zlib.NewWriter(&buf)
if _, err := w.Write(src); err != nil {
w.Close()
return nil, err
}
if err := w.Close(); err != nil {
return nil, err
}
return buf.Bytes(), nil
}
// Use simple encoding for smaller packets (just return data as-is)
// The 0xa5 flag is added by the caller, not here
return src, nil
}
// Decompress decompresses packet data using zlib
// This is called after the compression flag has already been checked and removed
func Decompress(src []byte) ([]byte, error) {
if len(src) < 4 {
return nil, fmt.Errorf("compressed data too small")
}
// Read uncompressed length (first 4 bytes)
uncompressedLen := binary.BigEndian.Uint32(src[:4])
// Sanity check
if uncompressedLen > MaxPacketSize {
return nil, fmt.Errorf("uncompressed size %d exceeds max packet size", uncompressedLen)
}
// Create reader for compressed data (skip length prefix)
r, err := zlib.NewReader(bytes.NewReader(src[4:]))
if err != nil {
return nil, err
}
defer r.Close()
// Read decompressed data
decompressed := make([]byte, uncompressedLen)
if _, err := io.ReadFull(r, decompressed); err != nil {
return nil, err
}
return decompressed, nil
}
// CompressPacket adds compression with proper flag handling (matches C++ EQProtocolPacket::Compress)
// Uses zlib (0x5a) for packets > 30 bytes, simple encoding (0xa5) for smaller packets
func CompressPacket(buffer []byte) ([]byte, error) {
if len(buffer) < 2 {
return buffer, nil
}
// Determine flag offset based on opcode size
flagOffset := 1
if buffer[0] == 0x00 {
flagOffset = 2 // Two-byte opcode
}
if len(buffer) <= flagOffset {
return buffer, nil // Too small to compress
}
// Get data to compress (after opcode)
dataToCompress := buffer[flagOffset:]
// Choose compression method based on size (C++ uses 30 byte threshold)
if len(dataToCompress) > 30 {
// Use zlib compression
compressed, err := Compress(dataToCompress)
if err != nil {
return nil, err
}
// Only use if compression actually reduced size
if len(compressed) < len(dataToCompress) {
result := make([]byte, flagOffset+1+len(compressed))
copy(result[:flagOffset], buffer[:flagOffset]) // Copy opcode
result[flagOffset] = 0x5a // Zlib flag
copy(result[flagOffset+1:], compressed) // Compressed data
return result, nil
}
} else {
// Use simple encoding - just add flag
result := make([]byte, len(buffer)+1)
copy(result[:flagOffset], buffer[:flagOffset]) // Copy opcode
result[flagOffset] = 0xa5 // Simple encoding flag
copy(result[flagOffset+1:], dataToCompress) // Original data
return result, nil
}
// No compression if it doesn't help
return buffer, nil
}
// DecompressPacket handles decompression with flag checking (matches C++ EQProtocolPacket::Decompress)
// Supports both zlib compression (0x5a) and simple encoding (0xa5)
func DecompressPacket(buffer []byte) ([]byte, error) {
if len(buffer) < 3 {
return buffer, nil // Too small to be compressed
}
// Determine flag offset based on opcode size
flagOffset := uint32(1)
if buffer[0] == 0x00 {
flagOffset = 2 // Two-byte opcode
}
if uint32(len(buffer)) <= flagOffset {
return buffer, nil // No room for compression flag
}
compressionFlag := buffer[flagOffset]
// Check compression type
if compressionFlag == 0x5a {
// Zlib compression
// Decompress data after flag, excluding last 2 CRC bytes
dataStart := flagOffset + 1
dataEnd := uint32(len(buffer)) - 2
if dataEnd <= dataStart {
return nil, fmt.Errorf("invalid compressed packet size")
}
decompressed, err := Decompress(buffer[dataStart:dataEnd])
if err != nil {
return nil, fmt.Errorf("zlib decompression failed: %w", err)
}
// Rebuild packet: opcode + decompressed data + CRC
result := make([]byte, flagOffset+uint32(len(decompressed))+2)
copy(result[:flagOffset], buffer[:flagOffset]) // Copy opcode
copy(result[flagOffset:], decompressed) // Copy decompressed data
// Copy CRC bytes
result[len(result)-2] = buffer[len(buffer)-2]
result[len(result)-1] = buffer[len(buffer)-1]
return result, nil
} else if compressionFlag == 0xa5 {
// Simple encoding - just remove the encoding flag
result := make([]byte, len(buffer)-1)
copy(result[:flagOffset], buffer[:flagOffset]) // Copy opcode
copy(result[flagOffset:], buffer[flagOffset+1:]) // Skip flag, copy rest
return result, nil
}
// No compression
return buffer, nil
}
// ChatEncode encodes chat data using EQ's XOR-based encoding (matches C++ EQProtocolPacket::ChatEncode)
// Uses 4-byte block XOR with rolling key that updates from encrypted data
func ChatEncode(buffer []byte, encodeKey int) {
if len(buffer) <= 2 || encodeKey == 0 {
return
}
// Skip encoding for certain packet types (matches C++ conditions)
if buffer[1] == 0x01 || buffer[0] == 0x02 || buffer[0] == 0x1d {
return
}
// Skip first 2 bytes (opcode)
data := buffer[2:]
size := len(data)
key := int32(encodeKey)
// Encode 4-byte blocks with rolling key
i := 0
for ; i+4 <= size; i += 4 {
// Read 4 bytes as int32 (little-endian like C++)
pt := binary.LittleEndian.Uint32(data[i:i+4])
encrypted := pt ^ uint32(key)
key = int32(encrypted) // Update key with encrypted data
binary.LittleEndian.PutUint32(data[i:i+4], encrypted)
}
// Encode remaining bytes with last key byte
keyByte := byte(key & 0xFF)
for ; i < size; i++ {
data[i] ^= keyByte
}
}
// ChatDecode decodes chat data using EQ's XOR-based encoding (matches C++ EQProtocolPacket::ChatDecode)
// Uses 4-byte block XOR with rolling key that updates from encrypted data
func ChatDecode(buffer []byte, decodeKey int) {
if len(buffer) <= 2 || decodeKey == 0 {
return
}
// Skip decoding for certain packet types (matches C++ conditions)
if buffer[1] == 0x01 || buffer[0] == 0x02 || buffer[0] == 0x1d {
return
}
// Skip first 2 bytes (opcode)
data := buffer[2:]
size := len(data)
key := int32(decodeKey)
// Decode 4-byte blocks with rolling key
i := 0
for ; i+4 <= size; i += 4 {
// Read 4 bytes as int32 (little-endian like C++)
encrypted := binary.LittleEndian.Uint32(data[i:i+4])
decrypted := encrypted ^ uint32(key)
key = int32(encrypted) // Update key with encrypted data (before decryption)
binary.LittleEndian.PutUint32(data[i:i+4], decrypted)
}
// Decode remaining bytes with last key byte
keyByte := byte(key & 0xFF)
for ; i < size; i++ {
data[i] ^= keyByte
}
}
// IsChatPacket checks if opcode is a chat-related packet
func IsChatPacket(opcode uint16) bool {
chatOpcodes := map[uint16]bool{
0x0300: true, // OP_ChatMsg
0x0302: true, // OP_TellMsg
0x0307: true, // OP_ChatLeaveChannelMsg
0x0308: true, // OP_ChatTellChannelMsg
0x0309: true, // OP_ChatTellUserMsg
0x0e07: true, // OP_GuildsayMsg
}
return chatOpcodes[opcode]
}
// longToIP converts uint32 IP to string
func longToIP(ip uint32) string {
return fmt.Sprintf("%d.%d.%d.%d",
byte(ip>>24), byte(ip>>16), byte(ip>>8), byte(ip))
}
// IsProtocolPacket checks if buffer contains a valid protocol packet (matches C++ EQProtocolPacket::IsProtocolPacket)
func IsProtocolPacket(buffer []byte) bool {
if len(buffer) < 2 {
return false
}
opcode := binary.BigEndian.Uint16(buffer[:2])
// Check against known protocol opcodes
switch opcode {
case opcodes.OP_SessionRequest,
opcodes.OP_SessionResponse,
opcodes.OP_Combined,
opcodes.OP_SessionDisconnect,
opcodes.OP_KeepAlive,
opcodes.OP_SessionStatRequest,
opcodes.OP_SessionStatResponse,
opcodes.OP_Packet,
opcodes.OP_Fragment,
opcodes.OP_Ack,
opcodes.OP_AppCombined,
opcodes.OP_OutOfOrderAck,
opcodes.OP_OutOfSession:
return true
default:
return false
}
}