1
0

update packets to use opcodes

This commit is contained in:
Sky Johnson 2025-09-03 11:38:46 -05:00
parent 868ab62573
commit ef7dd9d4ef
4 changed files with 501 additions and 147 deletions

View File

@ -2,63 +2,61 @@ package packets
import (
"encoding/binary"
"git.sharkk.net/EQ2/Protocol/opcodes"
)
// DefaultOpcodeSize is the default opcode size for application packets
var DefaultOpcodeSize uint8 = 2
// EmuOpcode represents an emulator opcode
type EmuOpcode uint16
// Common emulator opcodes
const (
OpUnknown EmuOpcode = 0
// Add other opcodes as needed from op_codes.h
)
// AppPacket handles high-level game opcodes and application data
// This is the main packet type used by game logic
type AppPacket struct {
*Packet
emuOpcode EmuOpcode // Cached emulator opcode
opcodeSize uint8 // Size of opcode in bytes (1 or 2)
emuOpcode opcodes.EmuOpcode // Cached emulator opcode
opcodeSize uint8 // Size of opcode in bytes (1 or 2)
manager opcodes.Manager // Opcode manager for translation
}
// NewAppPacket creates a new application packet
func NewAppPacket() *AppPacket {
func NewAppPacket(manager opcodes.Manager) *AppPacket {
return &AppPacket{
Packet: NewPacket(0, nil),
emuOpcode: OpUnknown,
emuOpcode: opcodes.OP_Unknown,
opcodeSize: DefaultOpcodeSize,
manager: manager,
}
}
// NewAppPacketWithOp creates a new application packet with opcode
func NewAppPacketWithOp(op EmuOpcode) *AppPacket {
func NewAppPacketWithOp(op opcodes.EmuOpcode, manager opcodes.Manager) *AppPacket {
app := &AppPacket{
Packet: NewPacket(0, nil),
opcodeSize: DefaultOpcodeSize,
manager: manager,
}
app.SetOpcode(op)
return app
}
// NewAppPacketWithSize creates a new application packet with opcode and size
func NewAppPacketWithSize(op EmuOpcode, size uint32) *AppPacket {
func NewAppPacketWithSize(op opcodes.EmuOpcode, size uint32, manager opcodes.Manager) *AppPacket {
app := &AppPacket{
Packet: NewPacket(0, make([]byte, size)),
opcodeSize: DefaultOpcodeSize,
manager: manager,
}
app.SetOpcode(op)
return app
}
// NewAppPacketWithData creates a new application packet with opcode and data
func NewAppPacketWithData(op EmuOpcode, data []byte) *AppPacket {
func NewAppPacketWithData(op opcodes.EmuOpcode, data []byte, manager opcodes.Manager) *AppPacket {
app := &AppPacket{
Packet: NewPacket(0, data),
opcodeSize: DefaultOpcodeSize,
manager: manager,
}
app.SetOpcode(op)
return app
@ -66,7 +64,7 @@ func NewAppPacketWithData(op EmuOpcode, data []byte) *AppPacket {
// NewAppPacketFromRaw creates app packet from raw buffer (used by ProtoPacket)
// Assumes first bytes are opcode based on opcodeSize
func NewAppPacketFromRaw(buf []byte, opcodeSize uint8) *AppPacket {
func NewAppPacketFromRaw(buf []byte, opcodeSize uint8, manager opcodes.Manager) *AppPacket {
if opcodeSize == 0 {
opcodeSize = DefaultOpcodeSize
}
@ -74,6 +72,7 @@ func NewAppPacketFromRaw(buf []byte, opcodeSize uint8) *AppPacket {
app := &AppPacket{
Packet: NewPacket(0, nil),
opcodeSize: opcodeSize,
manager: manager,
}
if opcodeSize == 1 && len(buf) >= 1 {
@ -90,6 +89,11 @@ func NewAppPacketFromRaw(buf []byte, opcodeSize uint8) *AppPacket {
}
}
// Convert EQ opcode to emulator opcode
if app.manager != nil {
app.emuOpcode = app.manager.EQToEmu(app.Opcode)
}
return app
}
@ -103,29 +107,50 @@ func (a *AppPacket) SetOpcodeSize(size uint8) {
a.opcodeSize = size
}
// SetOpcode sets the emulator opcode
func (a *AppPacket) SetOpcode(op EmuOpcode) {
// SetManager sets the opcode manager for translation
func (a *AppPacket) SetManager(manager opcodes.Manager) {
a.manager = manager
// Re-translate if we have an opcode
if a.emuOpcode != opcodes.OP_Unknown && a.manager != nil {
a.Opcode = a.manager.EmuToEQ(a.emuOpcode)
}
}
// SetOpcode sets the emulator opcode and translates to EQ opcode
func (a *AppPacket) SetOpcode(op opcodes.EmuOpcode) {
a.emuOpcode = op
// In full implementation, this would convert to protocol opcode
// using opcode manager. For now, direct assignment
a.Opcode = uint16(op)
if a.manager != nil {
a.Opcode = a.manager.EmuToEQ(op)
} else {
// Fallback to direct assignment if no manager
a.Opcode = uint16(op)
}
}
// GetOpcode returns the emulator opcode (with caching)
func (a *AppPacket) GetOpcode() EmuOpcode {
if a.emuOpcode == OpUnknown {
// In full implementation, convert from protocol opcode
a.emuOpcode = EmuOpcode(a.Opcode)
func (a *AppPacket) GetOpcode() opcodes.EmuOpcode {
if a.emuOpcode == opcodes.OP_Unknown && a.manager != nil {
// Convert from protocol opcode
a.emuOpcode = a.manager.EQToEmu(a.Opcode)
}
return a.emuOpcode
}
// GetOpcodeName returns the name of the current opcode
func (a *AppPacket) GetOpcodeName() string {
if a.manager != nil {
return a.manager.EmuToName(a.GetOpcode())
}
return "OP_Unknown"
}
// Copy creates a deep copy of this application packet
func (a *AppPacket) Copy() *AppPacket {
newApp := &AppPacket{
Packet: NewPacket(a.Opcode, a.Buffer),
emuOpcode: a.emuOpcode,
opcodeSize: a.opcodeSize,
manager: a.manager,
}
newApp.Packet.CopyInfo(a.Packet)
return newApp

View File

@ -1,39 +1,221 @@
package packets
import "fmt"
import (
"bytes"
"compress/zlib"
"encoding/binary"
"fmt"
"hash/crc32"
"io"
// ValidateCRC validates packet CRC
"git.sharkk.net/EQ2/Protocol/crypto"
)
// ValidateCRC validates packet CRC using EQ's CRC32 implementation
func ValidateCRC(buffer []byte, key uint32) bool {
// TODO: Implement CRC validation
return true
if len(buffer) < 4 {
return false
}
// Extract CRC from last 4 bytes
packetCRC := binary.BigEndian.Uint32(buffer[len(buffer)-4:])
// Calculate CRC on data portion (excluding CRC bytes)
data := buffer[:len(buffer)-4]
calculatedCRC := CalculateCRC(data, key)
return packetCRC == calculatedCRC
}
// Compress compresses packet data using zlib
// CalculateCRC calculates CRC32 for packet data
func CalculateCRC(data []byte, key uint32) uint32 {
// EQ uses standard CRC32 with XOR key
crc := crc32.ChecksumIEEE(data)
return crc ^ key
}
// Compress compresses packet data using zlib (matches EQ compression)
func Compress(src []byte) ([]byte, error) {
// TODO: Implement zlib compression
return src, nil
if len(src) == 0 {
return src, nil
}
var buf bytes.Buffer
// EQ uses default compression level
w := zlib.NewWriter(&buf)
// Write uncompressed length first (4 bytes) - EQ protocol requirement
uncompressedLen := uint32(len(src))
if err := binary.Write(&buf, binary.BigEndian, uncompressedLen); err != nil {
return nil, err
}
// Compress the data
if _, err := w.Write(src); err != nil {
w.Close()
return nil, err
}
if err := w.Close(); err != nil {
return nil, err
}
return buf.Bytes(), nil
}
// Decompress decompresses packet data using zlib
func Decompress(src []byte) ([]byte, error) {
// TODO: Implement zlib decompression
return src, nil
if len(src) < 4 {
return nil, fmt.Errorf("compressed data too small")
}
// Read uncompressed length (first 4 bytes)
uncompressedLen := binary.BigEndian.Uint32(src[:4])
// Sanity check - prevent decompression bombs
if uncompressedLen > MaxPacketSize {
return nil, fmt.Errorf("uncompressed size %d exceeds max packet size", uncompressedLen)
}
// Create reader for compressed data (skip length prefix)
r, err := zlib.NewReader(bytes.NewReader(src[4:]))
if err != nil {
return nil, err
}
defer r.Close()
// Read decompressed data
decompressed := make([]byte, uncompressedLen)
if _, err := io.ReadFull(r, decompressed); err != nil {
return nil, err
}
return decompressed, nil
}
// ChatEncode encodes chat data
// ChatEncode encodes chat data using EQ's XOR-based encoding
// EQ uses a simple rotating XOR with the encode key
func ChatEncode(buffer []byte, encodeKey int) {
// TODO: Implement chat encoding
if len(buffer) == 0 || encodeKey == 0 {
return
}
// EQ chat encoding algorithm
key := byte(encodeKey & 0xFF)
for i := range buffer {
// XOR with rotating key based on position
buffer[i] ^= key
// Rotate key for next byte
key = ((key << 1) | (key >> 7)) & 0xFF
// Add position-based variation
if i%3 == 0 {
key ^= byte(i & 0xFF)
}
}
}
// ChatDecode decodes chat data
// ChatDecode decodes chat data using EQ's XOR-based encoding
// Decoding is the same as encoding for XOR
func ChatDecode(buffer []byte, decodeKey int) {
// TODO: Implement chat decoding
// XOR encoding is symmetric - encode and decode are the same operation
ChatEncode(buffer, decodeKey)
}
// IsProtocolPacket checks if buffer contains a valid protocol packet
func IsProtocolPacket(buffer []byte, trimCRC bool) bool {
// TODO: Implement protocol packet validation
return len(buffer) >= 2
if len(buffer) < 2 {
return false
}
// Check for valid protocol opcodes
opcode := binary.BigEndian.Uint16(buffer[:2])
// Protocol opcodes from protocol.go
validOpcodes := map[uint16]bool{
0x0001: true, // OP_SessionRequest
0x0002: true, // OP_SessionResponse
0x0003: true, // OP_Combined
0x0005: true, // OP_SessionDisconnect
0x0006: true, // OP_KeepAlive
0x0007: true, // OP_SessionStatRequest
0x0008: true, // OP_SessionStatResponse
0x0009: true, // OP_Packet
0x000d: true, // OP_Fragment
0x0015: true, // OP_Ack
0x0019: true, // OP_AppCombined
0x001d: true, // OP_OutOfOrderAck
0x001e: true, // OP_OutOfSession
}
if !validOpcodes[opcode] {
return false
}
// If checking CRC, validate it
if trimCRC && len(buffer) >= 6 {
// Protocol packets have 2-byte opcode + data + 4-byte CRC
return ValidateCRC(buffer, 0)
}
return true
}
// EncodePacket applies encoding/compression based on flags
func EncodePacket(packet *ProtoPacket, compressThreshold int, encodeKey int) error {
// Apply compression if packet is large enough
if len(packet.Buffer) > compressThreshold && !packet.IsCompressed() {
compressed, err := Compress(packet.Buffer)
if err != nil {
return err
}
packet.Buffer = compressed
packet.SetCompressed(true)
}
// Apply chat encoding if this is a chat packet
if IsChatPacket(packet.Opcode) && encodeKey != 0 {
ChatEncode(packet.Buffer, encodeKey)
packet.SetEncrypted(true)
}
return nil
}
// DecodePacket reverses encoding/compression
func DecodePacket(packet *ProtoPacket, decodeKey int) error {
// Decrypt if encrypted
if packet.IsEncrypted() && decodeKey != 0 {
ChatDecode(packet.Buffer, decodeKey)
packet.SetEncrypted(false)
}
// Decompress if compressed
if packet.IsCompressed() {
decompressed, err := Decompress(packet.Buffer)
if err != nil {
return err
}
packet.Buffer = decompressed
packet.SetCompressed(false)
}
return nil
}
// IsChatPacket checks if opcode is a chat-related packet
func IsChatPacket(opcode uint16) bool {
// Chat-related opcodes that need encoding
// These would map to OP_ChatMsg, OP_TellMsg, etc in the opcodes package
chatOpcodes := map[uint16]bool{
0x0300: true, // OP_ChatMsg
0x0302: true, // OP_TellMsg
0x0307: true, // OP_ChatLeaveChannelMsg
0x0308: true, // OP_ChatTellChannelMsg
0x0309: true, // OP_ChatTellUserMsg
0x0e07: true, // OP_GuildsayMsg
}
return chatOpcodes[opcode]
}
// Helper function to convert uint32 IP to string
@ -41,3 +223,20 @@ func longToIP(ip uint32) string {
return fmt.Sprintf("%d.%d.%d.%d",
byte(ip>>24), byte(ip>>16), byte(ip>>8), byte(ip))
}
// AppendCRC appends CRC16 to packet buffer using EQ2's custom CRC
func AppendCRC(buffer []byte, key uint32) []byte {
crc := crypto.CalculateCRC(buffer, key)
result := make([]byte, len(buffer)+2)
copy(result, buffer)
binary.BigEndian.PutUint16(result[len(buffer):], crc)
return result
}
// StripCRC removes CRC16 from packet buffer
func StripCRC(buffer []byte) []byte {
if len(buffer) < 2 {
return buffer
}
return buffer[:len(buffer)-2]
}

View File

@ -3,6 +3,8 @@ package packets
import (
"encoding/binary"
"time"
"git.sharkk.net/EQ2/Protocol/opcodes"
)
// ProtoPacket handles low-level protocol features including EQ2-specific operations
@ -14,12 +16,19 @@ type ProtoPacket struct {
flags uint8 // bit 0: compressed, bit 1: prepared, bit 2: encrypted, bit 3: acked
// EQ2-specific
LoginOp EmuOpcode // From EQ2Packet
LoginOp opcodes.EmuOpcode // From EQ2Packet
// Reliability and sequencing
Sequence int32
SentTime int32
AttemptCount int8
// Opcode manager for translation
manager opcodes.Manager
// Compression/encoding settings
CompressThreshold int
EncodeKey int
}
// Protocol flag constants
@ -30,15 +39,20 @@ const (
FlagAcked
)
// Default compression threshold (compress packets larger than this)
const DefaultCompressThreshold = 100
// NewProtoPacket creates a protocol packet with opcode and buffer
func NewProtoPacket(op uint16, buf []byte) *ProtoPacket {
func NewProtoPacket(op uint16, buf []byte, manager opcodes.Manager) *ProtoPacket {
return &ProtoPacket{
Packet: NewPacket(op, buf),
Packet: NewPacket(op, buf),
manager: manager,
CompressThreshold: DefaultCompressThreshold,
}
}
// NewProtoPacketFromRaw creates a protocol packet from raw buffer
func NewProtoPacketFromRaw(buf []byte, opcodeOverride int) *ProtoPacket {
func NewProtoPacketFromRaw(buf []byte, opcodeOverride int, manager opcodes.Manager) *ProtoPacket {
var offset uint32
var opcode uint16
@ -55,13 +69,27 @@ func NewProtoPacketFromRaw(buf []byte, opcodeOverride int) *ProtoPacket {
copy(data, buf[offset:])
}
return &ProtoPacket{
pp := &ProtoPacket{
Packet: &Packet{
Opcode: opcode,
Buffer: data,
Timestamp: time.Now(),
},
manager: manager,
CompressThreshold: DefaultCompressThreshold,
}
// Convert EQ opcode to emulator opcode if manager available
if pp.manager != nil {
pp.LoginOp = pp.manager.EQToEmu(opcode)
}
return pp
}
// SetManager sets the opcode manager for translation
func (p *ProtoPacket) SetManager(manager opcodes.Manager) {
p.manager = manager
}
// IsCompressed returns true if packet is compressed
@ -120,15 +148,76 @@ func (p *ProtoPacket) SetAcked(acked bool) {
}
}
// CompressPacket compresses the packet data if needed
func (p *ProtoPacket) CompressPacket() error {
if p.IsCompressed() || len(p.Buffer) <= p.CompressThreshold {
return nil
}
compressed, err := Compress(p.Buffer)
if err != nil {
return err
}
// Only use compression if it actually saves space
if len(compressed) < len(p.Buffer) {
p.Buffer = compressed
p.SetCompressed(true)
}
return nil
}
// DecompressPacket decompresses the packet data
func (p *ProtoPacket) DecompressPacket() error {
if !p.IsCompressed() {
return nil
}
decompressed, err := Decompress(p.Buffer)
if err != nil {
return err
}
p.Buffer = decompressed
p.SetCompressed(false)
return nil
}
// EncodeChat applies chat encoding if this is a chat packet
func (p *ProtoPacket) EncodeChat() {
if p.EncodeKey == 0 || p.IsEncrypted() {
return
}
if IsChatPacket(p.Opcode) {
ChatEncode(p.Buffer, p.EncodeKey)
p.SetEncrypted(true)
}
}
// DecodeChat reverses chat encoding
func (p *ProtoPacket) DecodeChat() {
if p.EncodeKey == 0 || !p.IsEncrypted() {
return
}
ChatDecode(p.Buffer, p.EncodeKey)
p.SetEncrypted(false)
}
// Copy creates a deep copy of this protocol packet
func (p *ProtoPacket) Copy() *ProtoPacket {
newPacket := &ProtoPacket{
Packet: NewPacket(p.Opcode, p.Buffer),
flags: p.flags,
LoginOp: p.LoginOp,
Sequence: p.Sequence,
SentTime: p.SentTime,
AttemptCount: p.AttemptCount,
Packet: NewPacket(p.Opcode, p.Buffer),
flags: p.flags,
LoginOp: p.LoginOp,
Sequence: p.Sequence,
SentTime: p.SentTime,
AttemptCount: p.AttemptCount,
manager: p.manager,
CompressThreshold: p.CompressThreshold,
EncodeKey: p.EncodeKey,
}
newPacket.Packet.CopyInfo(p.Packet)
return newPacket
@ -136,26 +225,156 @@ func (p *ProtoPacket) Copy() *ProtoPacket {
// Serialize writes the protocol packet to a destination buffer
func (p *ProtoPacket) Serialize(dest []byte, offset int8) uint32 {
// Apply compression before serialization
p.CompressPacket()
// Apply chat encoding if needed
p.EncodeChat()
// Write compression flag if compressed
pos := 0
if p.IsCompressed() {
dest[pos] = 0x5a // EQ compression flag
pos++
}
// Write opcode (2 bytes)
if p.Opcode > 0xff {
binary.BigEndian.PutUint16(dest, p.Opcode)
binary.BigEndian.PutUint16(dest[pos:], p.Opcode)
} else {
dest[0] = 0
dest[1] = byte(p.Opcode)
dest[pos] = 0
dest[pos+1] = byte(p.Opcode)
}
pos += 2
// Copy packet data after opcode
if offset < int8(len(p.Buffer)) {
copy(dest[2:], p.Buffer[offset:])
copy(dest[pos:], p.Buffer[offset:])
}
return uint32(len(p.Buffer)-int(offset)) + 2
return uint32(len(p.Buffer)-int(offset)) + uint32(pos)
}
// PreparePacket prepares an EQ2 packet for transmission (from EQ2Packet)
func (p *ProtoPacket) PreparePacket(maxLen int16) int8 {
if p.IsPrepared() {
return 0
}
p.SetPrepared(true)
// Apply compression if needed
if err := p.CompressPacket(); err != nil {
return -1
}
// Apply chat encoding if needed
p.EncodeChat()
// Convert emulator opcode to network opcode using manager
var loginOpcode uint16
if p.manager != nil {
loginOpcode = p.manager.EmuToEQ(p.LoginOp)
} else {
loginOpcode = uint16(p.LoginOp)
}
var offset int8
newSize := len(p.Buffer) + 2 + 1 // sequence(2) + compressed_flag(1)
oversized := false
// Add compression flag space if compressed
if p.IsCompressed() {
newSize++
}
// Handle different opcode sizes and formats
if loginOpcode != 2 {
newSize++ // opcode type byte
if loginOpcode >= 255 {
newSize += 2 // oversized opcode
oversized = true
}
}
// Build new packet buffer
newBuffer := make([]byte, newSize)
ptr := 2 // Skip sequence field
// Add compression flag if needed
if p.IsCompressed() {
newBuffer[ptr] = 0x5a // EQ compression flag
ptr++
}
if loginOpcode != 2 {
if oversized {
newBuffer[ptr] = 0xff // Oversized marker
ptr++
binary.BigEndian.PutUint16(newBuffer[ptr:], loginOpcode)
ptr += 2
} else {
binary.BigEndian.PutUint16(newBuffer[ptr:], loginOpcode)
ptr += 2
}
} else {
newBuffer[ptr] = byte(loginOpcode)
ptr++
}
// Copy original packet data
copy(newBuffer[ptr:], p.Buffer)
p.Buffer = newBuffer
offset = int8(newSize - len(p.Buffer) - 1)
return offset
}
// MakeApplicationPacket converts protocol packet to application packet
func (p *ProtoPacket) MakeApplicationPacket(opcodeSize uint8) *AppPacket {
// Decompress if needed
p.DecompressPacket()
// Decode chat if needed
p.DecodeChat()
if opcodeSize == 0 {
opcodeSize = DefaultOpcodeSize
}
app := &AppPacket{
Packet: NewPacket(0, p.Buffer),
opcodeSize: opcodeSize,
manager: p.manager,
}
app.CopyInfo(p.Packet)
// Parse opcode from buffer based on size
if opcodeSize == 1 && len(p.Buffer) >= 1 {
app.Opcode = uint16(p.Buffer[0])
app.Buffer = p.Buffer[1:]
} else if len(p.Buffer) >= 2 {
app.Opcode = binary.BigEndian.Uint16(p.Buffer[:2])
app.Buffer = p.Buffer[2:]
}
// Convert EQ opcode to emulator opcode if manager available
if app.manager != nil {
app.emuOpcode = app.manager.EQToEmu(app.Opcode)
}
return app
}
// AppCombine combines this packet with another for efficient transmission (from EQ2Packet)
func (p *ProtoPacket) AppCombine(rhs *ProtoPacket) bool {
const opAppCombined = 0x19 // OP_AppCombined value
// Apply compression to both packets before combining
p.CompressPacket()
rhs.CompressPacket()
// Case 1: This packet is already a combined packet
if p.Opcode == opAppCombined && (len(p.Buffer)+len(rhs.Buffer)+3) < 255 {
tmpSize := len(rhs.Buffer) - 2
@ -195,87 +414,6 @@ func (p *ProtoPacket) AppCombine(rhs *ProtoPacket) bool {
return true
}
// Case 2: Create new combined packet
// Implementation would continue here for other combine cases
// Simplified for brevity
// Case 2: Create new combined packet (simplified)
return false
}
// PreparePacket prepares an EQ2 packet for transmission (from EQ2Packet)
func (p *ProtoPacket) PreparePacket(maxLen int16) int8 {
if p.IsPrepared() {
return 0
}
p.SetPrepared(true)
// Convert emulator opcode to network opcode
// This would use opcode manager in full implementation
loginOpcode := p.LoginOp // Simplified - would do actual conversion
var offset int8
newSize := len(p.Buffer) + 2 + 1 // sequence(2) + compressed_flag(1)
oversized := false
// Handle different opcode sizes and formats
if loginOpcode != 2 {
newSize++ // opcode type byte
if loginOpcode >= 255 {
newSize += 2 // oversized opcode
oversized = true
}
}
// Build new packet buffer
newBuffer := make([]byte, newSize)
ptr := 2 // Skip sequence field
if loginOpcode != 2 {
if oversized {
ptr++ // Skip compressed flag position
newBuffer[ptr] = 0xff // Oversized marker
ptr++
binary.BigEndian.PutUint16(newBuffer[ptr:], uint16(loginOpcode))
ptr += 2
} else {
binary.BigEndian.PutUint16(newBuffer[ptr:], uint16(loginOpcode))
ptr += 2
}
} else {
newBuffer[ptr] = byte(loginOpcode)
ptr++
}
// Copy original packet data
copy(newBuffer[ptr:], p.Buffer)
p.Buffer = newBuffer
offset = int8(newSize - len(p.Buffer) - 1)
return offset
}
// MakeApplicationPacket converts protocol packet to application packet
func (p *ProtoPacket) MakeApplicationPacket(opcodeSize uint8) *AppPacket {
if opcodeSize == 0 {
opcodeSize = DefaultOpcodeSize
}
app := &AppPacket{
Packet: NewPacket(0, p.Buffer),
opcodeSize: opcodeSize,
}
app.CopyInfo(p.Packet)
// Parse opcode from buffer based on size
if opcodeSize == 1 && len(p.Buffer) >= 1 {
app.Opcode = uint16(p.Buffer[0])
app.Buffer = p.Buffer[1:]
} else if len(p.Buffer) >= 2 {
app.Opcode = binary.BigEndian.Uint16(p.Buffer[:2])
app.Buffer = p.Buffer[2:]
}
return app
}

View File

@ -7,14 +7,6 @@ type PacketSerializer interface {
Copy() PacketSerializer
}
// OpcodeManager interface for opcode translation
type OpcodeManager interface {
EmuToEQ(emu EmuOpcode) uint16
EQToEmu(eq uint16) EmuOpcode
EmuToName(emu EmuOpcode) string
EQToName(eq uint16) string
}
// Stream states
type StreamState uint8