// Copyright (c) SHA512 Implementation - MIT License #pragma once #include #include #include class SHA512 { protected: typedef unsigned char uint8; typedef unsigned int uint32; typedef unsigned long long uint64; // SHA512 round constants (80 64-bit words) const static uint64 sha512_k[]; static const unsigned int SHA384_512_BLOCK_SIZE = (1024/8); public: static const unsigned int DIGEST_SIZE = (512 / 8); // Initialize SHA512 context with standard initial hash values void init(); // Process input message data in chunks, handling partial blocks void update(const unsigned char *message, unsigned int len); // Finalize hash computation and output 64-byte digest void final(unsigned char *digest); protected: // Core SHA512 transformation function - processes message blocks void transform(const unsigned char *message, unsigned int block_nb); unsigned int m_tot_len; // Total length of processed data unsigned int m_len; // Current length in buffer unsigned char m_block[2 * SHA384_512_BLOCK_SIZE]; // Input buffer uint64 m_h[8]; // Hash state (8 64-bit words) }; // Convenience function - compute SHA512 hash of string input std::string sha512(std::string input); // SHA2 bit manipulation macros #define SHA2_SHFR(x, n) (x >> n) #define SHA2_ROTR(x, n) ((x >> n) | (x << ((sizeof(x) << 3) - n))) #define SHA2_ROTL(x, n) ((x << n) | (x >> ((sizeof(x) << 3) - n))) #define SHA2_CH(x, y, z) ((x & y) ^ (~x & z)) #define SHA2_MAJ(x, y, z) ((x & y) ^ (x & z) ^ (y & z)) #define SHA512_F1(x) (SHA2_ROTR(x, 28) ^ SHA2_ROTR(x, 34) ^ SHA2_ROTR(x, 39)) #define SHA512_F2(x) (SHA2_ROTR(x, 14) ^ SHA2_ROTR(x, 18) ^ SHA2_ROTR(x, 41)) #define SHA512_F3(x) (SHA2_ROTR(x, 1) ^ SHA2_ROTR(x, 8) ^ SHA2_SHFR(x, 7)) #define SHA512_F4(x) (SHA2_ROTR(x, 19) ^ SHA2_ROTR(x, 61) ^ SHA2_SHFR(x, 6)) // Pack/unpack 32-bit and 64-bit values to/from byte arrays (big-endian) #define SHA2_UNPACK32(x, str) \ { \ *((str) + 3) = (uint8) ((x) ); \ *((str) + 2) = (uint8) ((x) >> 8); \ *((str) + 1) = (uint8) ((x) >> 16); \ *((str) + 0) = (uint8) ((x) >> 24); \ } #define SHA2_UNPACK64(x, str) \ { \ *((str) + 7) = (uint8) ((x) ); \ *((str) + 6) = (uint8) ((x) >> 8); \ *((str) + 5) = (uint8) ((x) >> 16); \ *((str) + 4) = (uint8) ((x) >> 24); \ *((str) + 3) = (uint8) ((x) >> 32); \ *((str) + 2) = (uint8) ((x) >> 40); \ *((str) + 1) = (uint8) ((x) >> 48); \ *((str) + 0) = (uint8) ((x) >> 56); \ } #define SHA2_PACK64(str, x) \ { \ *(x) = ((uint64) *((str) + 7) ) \ | ((uint64) *((str) + 6) << 8) \ | ((uint64) *((str) + 5) << 16) \ | ((uint64) *((str) + 4) << 24) \ | ((uint64) *((str) + 3) << 32) \ | ((uint64) *((str) + 2) << 40) \ | ((uint64) *((str) + 1) << 48) \ | ((uint64) *((str) + 0) << 56); \ } // SHA512 round constants - precomputed fractional parts of cube roots of first 80 primes const unsigned long long SHA512::sha512_k[80] = { 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL }; // Core SHA512 transformation - processes message blocks through compression function void SHA512::transform(const unsigned char *message, unsigned int block_nb) { uint64 w[80]; // Message schedule array uint64 wv[8]; // Working variables uint64 t1, t2; // Temporary values const unsigned char *sub_block; int i, j; // Process each 1024-bit block for (i = 0; i < (int) block_nb; i++) { sub_block = message + (i << 7); // Point to current 128-byte block // Prepare first 16 words of message schedule from input for (j = 0; j < 16; j++) { SHA2_PACK64(&sub_block[j << 3], &w[j]); } // Extend to 80 words using SHA512 message schedule for (j = 16; j < 80; j++) { w[j] = SHA512_F4(w[j - 2]) + w[j - 7] + SHA512_F3(w[j - 15]) + w[j - 16]; } // Initialize working variables with current hash values for (j = 0; j < 8; j++) { wv[j] = m_h[j]; } // Main compression loop - 80 rounds for (j = 0; j < 80; j++) { t1 = wv[7] + SHA512_F2(wv[4]) + SHA2_CH(wv[4], wv[5], wv[6]) + sha512_k[j] + w[j]; t2 = SHA512_F1(wv[0]) + SHA2_MAJ(wv[0], wv[1], wv[2]); wv[7] = wv[6]; wv[6] = wv[5]; wv[5] = wv[4]; wv[4] = wv[3] + t1; wv[3] = wv[2]; wv[2] = wv[1]; wv[1] = wv[0]; wv[0] = t1 + t2; } // Add compressed chunk to current hash values for (j = 0; j < 8; j++) { m_h[j] += wv[j]; } } } // Initialize SHA512 context with standard IV values from FIPS 180-4 void SHA512::init() { m_h[0] = 0x6a09e667f3bcc908ULL; m_h[1] = 0xbb67ae8584caa73bULL; m_h[2] = 0x3c6ef372fe94f82bULL; m_h[3] = 0xa54ff53a5f1d36f1ULL; m_h[4] = 0x510e527fade682d1ULL; m_h[5] = 0x9b05688c2b3e6c1fULL; m_h[6] = 0x1f83d9abfb41bd6bULL; m_h[7] = 0x5be0cd19137e2179ULL; m_len = 0; m_tot_len = 0; } // Process input data, handling buffering and block alignment void SHA512::update(const unsigned char *message, unsigned int len) { unsigned int block_nb; unsigned int new_len, rem_len, tmp_len; const unsigned char *shifted_message; // Calculate space remaining in current block tmp_len = SHA384_512_BLOCK_SIZE - m_len; rem_len = len < tmp_len ? len : tmp_len; // Fill current block buffer memcpy(&m_block[m_len], message, rem_len); // If block not complete, just update length and return if (m_len + len < SHA384_512_BLOCK_SIZE) { m_len += len; return; } // Process complete block(s) new_len = len - rem_len; block_nb = new_len / SHA384_512_BLOCK_SIZE; shifted_message = message + rem_len; // Transform current buffered block transform(m_block, 1); // Transform any additional complete blocks transform(shifted_message, block_nb); // Store remainder in buffer for next update rem_len = new_len % SHA384_512_BLOCK_SIZE; memcpy(m_block, &shifted_message[block_nb << 7], rem_len); m_len = rem_len; m_tot_len += (block_nb + 1) << 7; } // Finalize hash computation with padding and length encoding void SHA512::final(unsigned char *digest) { unsigned int block_nb; unsigned int pm_len; unsigned int len_b; int i; // Calculate number of blocks needed for padding block_nb = 1 + ((SHA384_512_BLOCK_SIZE - 17) < (m_len % SHA384_512_BLOCK_SIZE)); // Total bit length for final block len_b = (m_tot_len + m_len) << 3; pm_len = block_nb << 7; // Pad with zeros, add required '1' bit, append length memset(m_block + m_len, 0, pm_len - m_len); m_block[m_len] = 0x80; SHA2_UNPACK32(len_b, m_block + pm_len - 4); // Process final block(s) transform(m_block, block_nb); // Output final hash values as big-endian bytes for (i = 0; i < 8; i++) { SHA2_UNPACK64(m_h[i], &digest[i << 3]); } } // Convenience function - compute SHA512 hash of string and return as hex std::string sha512(std::string input) { unsigned char digest[SHA512::DIGEST_SIZE]; memset(digest, 0, SHA512::DIGEST_SIZE); // Initialize context and process input SHA512 ctx = SHA512(); ctx.init(); ctx.update((unsigned char*)input.c_str(), input.length()); ctx.final(digest); // Convert to hex string char buf[2 * SHA512::DIGEST_SIZE + 1]; buf[2 * SHA512::DIGEST_SIZE] = 0; for (int i = 0; i < SHA512::DIGEST_SIZE; i++) { sprintf(buf + i * 2, "%02x", digest[i]); } return std::string(buf); }